BIOINFORMATIGS
FOR BIOLOS

-

>ISTS

.. o by e e

B~

=l
=e

= kS
....T.GT.I.-..[
L .
e b e s
g [et [e
P e e i o i

T R I T e
e e e
b e e b e e =
P = e
bt e b e e e ot et ot e =

T st o e o a0 ot pon e

e b b e b b b e

o ol o e il S o

-
more information — www.cambridge.org/9781107011465

v ---- -

http://www.cambridge.org/9781107011465

Thispageintentionally left blank

The computational education of biologists is changing to prepare students for facing the complex data
sets of today’s life science research. In this concise textbook, the authors’ fresh pedagogical approaches
lead biology students from first principles towards computational thinking.

A team of renowned bioinformaticians take innovative routes to introduce computational ideas in the
context of real biological problems. Intuitive explanations promote deep understanding, using little
mathematical formalism. Self-contained chapters show how computational procedures are developed
and applied to central topics in bioinformatics and genomics, such as the genetic basis of disease,
genome evolution, or the tree of life concept. Using bioinformatic resources requires a basic
understanding of what bioinformatics is and what it can do. Rather than just presenting tools, the
authors — each a leading scientist — engage the students’ problem-solving skills, preparing them to meet
the computational challenges of their life science careers.

PAVEL PEVZNER is Ronald R. Taylor Professor of Computer Science and Director of the Bioinformatics
and Systems Biology Program at the University of California, San Diego. He was named a Howard Hughes
Medical Institute Professor in 2006.

RON SHAMIR is Raymond and Beverly Sackler Professor of Bioinformatics and head of the Edmond J.
Safra Bioinformatics Program at Tel Aviv University. He founded the joint Life Sciences — Computer
Science undergraduate degree program in Bioinformatics at Tel Aviv University.

BIOINFORMATICS
FOR BIOLOGISTS

EDITED BY

Pavel Pevzner

University of California, San Diego, USA
AND

Ron Shamir
Tel Aviv University, Israel

B% CAMBRIDGE

W5 UNIVERSITY PRESS

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, Sdo Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9781107011465

© Cambridge University Press 2011

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2011
Printed in the United Kingdom at the University Press, Cambridge
A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

Bioinformatics for biologists / edited by Pavel Pevzner, Ron Shamir.
p. cm.

Includes index.

ISBN 978-1-107-01146-5 (hardback)

1. Bioinformatics. 1. Pevzner, Pavel. Il. Shamir, Ron.

QH324.2.B5474 2011

572.8 —dc23 2011022989

ISBN 978-1-107-01146-5 Hardback
ISBN 978-1-107-64887-6 Paperback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLSs for external or third-party internet websites referred to in
this publication, and does not guarantee that any content on such websites is,
or will remain, accurate or appropriate.

http://www.cambridge.org
http://www.cambridge.org/9781107011465

To Ellina, the love of my life.

(P.P.)

To my parents, Varda and Raphael Shamir.

(rR.s.)

PART I

PART Il
6

Extended contents ix

Preface xv

Acknowledgments xxi

Editors and contributors ~ xxiv

A computational micro primer xxvi

Genomes 1

Identifying the genetic basis of disease 3

Vineet Bafha

Pattern identification in a haplotype block 23

Kun-Mao Chao

Genome reconstruction: a puzzle with a billion pieces 36
Phillip E. C. Compeau and Pavel A. Pevzner

Dynamic programming: one algorithmic key for many biological locks
Mikhail Gelfand

Measuring evidence: who’s your daddy? 93

Christopher Lee

Gene Transcription and Regulation 109

How do replication and transcription change genomes? 111
Andrey Grigoriev

Modeling regulatory motifs 126

Sridhar Hannenhalli

How does the influenza virus jump from animals to humans? 148
Haixu Tang

66

vii

viii

PART Il
9

10

1

PART IV
12

13

14

PART V
15

16

Contents

Evolution 165

Genome rearrangements 167

Steffen Heber and Brian E. Howard

Comparison of phylogenetic trees and search for a central trend in the “Forest
of Life” 189

Eugene V. Koonin, Pere Puigho, and Yuri I. Wolf

Reconstructing the history of large-scale genomic changes: biological questions
and computational challenges 201

Jian Ma

Phylogeny 225

Figs, wasps, gophers, and lice: a computational exploration of coevolution 227
Ran Libeskind-Hadas

Big cat phylogenies, consensus trees, and computational thinking 248
Seung-Jin Sul and Tiffani L. Williams

Phylogenetic estimation: optimization problems, heuristics, and performance
analysis 267

Tandy Warnow

Regulatory Networks 289

Biological networks uncover evolution, disease, and gene functions 291
NataSa Przulj

Regulatory network inference 315

Russell Schwartz

Glossary 344
Index 350

PART I

B WN =

4.1
4.2
43

51
5.2
53
54

Preface xv

Acknowledgments xxi

Editors and contributors xxiv

A computational micro primer xxvi

Genomes 1

Identifying the genetic basis of disease 3
Vineet Bafna

Background 3

Genetic variation: mutation, recombination, and coalescence
Statistical tests 9

LD and statistical tests of association 12
Extensions 12

Continuous phenotypes 12

Genotypes and extensions 14

Linkage versus association 15

Confound it 16

Sampling issues: power, etc. 16

Population substructure 17

Epistasis 18

Rare variants 19

Discussion 20

Questions 20

Further Reading 21

B W N =

11
1.2

2.1
2.2
2.3
2.4
2.5
2.6

31
3.2
3.3
3.4

4.1
4.2

Ui B W N =

Extended contents

Pattern identification in a haplotype block 23
Kun-Mao Chao

Introduction 23

The tag SNP selection problem 25

A reduction to the set-covering problem 26

A reduction to the integer-programming problem 30
Discussion 33

Questions 33

Bibliographic notes and further reading 34

Genome reconstruction: a puzzle with a billion pieces 36
Phillip E. C. Compeau and Pavel A. Pevzner
Introduction to DNA sequencing 36

DNA sequencing and the overlap puzzle 36
Complications of fragment assembly 38

The mathematics of DNA sequencing 40
Historical motivation 40

Graphs 43

Eulerian and Hamiltonian cycles 43

Euler’s Theorem 44

Euler’s Theorem for directed graphs 45

Tractable vs. intractable problems 48

From Euler and Hamilton to genome assembly 49
Genome assembly as a Hamiltonian cycle problem 49
Fragment assembly as an Eulerian cycle problem 50
De Bruijn graphs 52

Read multiplicities and further complications 54

A short history of read generation 55

The tale of three biologists: DNA chips 55

Recent revolution in DNA sequencing 58

Proof of Euler’s Theorem 58

Discussion 63

Notes 63

Questions 64

Dynamic programming: one algorithmic key for many biological locks
Mikhail Gelfand

Introduction 66

Graphs 69

Dynamic programming 70

Alignment 77

Gene recognition 81

66

Extended contents

6 Dynamic programming in a general situation. Physics of polymers 83
Answers to quiz 86
History, sources, and further reading 91

5 Measuring evidence: who’s your daddy? 93
Christopher Lee
1 Welcome to the Maury Povich Show! 93
1.1 What makesyouyou 94
1.2 SNPs, forensics, Jacques, and you 96
2 Inference 97
2.1 The foundation: thinking about probability “conditionally” 97
2.2 Bayes’ Law 100
2.3 Estimating disease risk 100
2.4 Arecipe for inference 102
3 Paternity inference 103
Questions 108

PART Il Gene Transcription and Regulation 109
6 How do replication and transcription change genomes? 111
Andrey Grigoriev
Introduction 111
Cumulative skew diagrams 112
Different properties of two DNA strands 116
Replication, transcription, and genome rearrangements 120
Discussion 124
Questions 125

B W N -

7 Modeling regulatory motifs 126
Sridhar Hannenhalli

1 Introduction 126
2 Experimental determination of binding sites 129
3 Consensus 130
4 Position Weight Matrices 132
5 Higher-order PWM 134
6 Maximum dependence decomposition 135
7 Modeling and detecting arbitrary dependencies 138
8 Searching for novel binding sites 139
8.1 A PWM-based search for binding sites 140
8.2 A graph-based approach to binding site prediction 140
9 Additional hallmarks of functional TF binding sites 141
9.1 Evolutionary conservation 142
9.2 Modular interactions between TFs 142

Xii

2.1
2.2
2.3

PART Ili
9

Ui B W N =

10

3.1
3.2

1

Extended contents

Discussion 143
Questions 144

How does the influenza virus jump from animals to humans? 148
Haixu Tang

Introduction 148

Host switch of influenza: molecular mechanisms 151

Diversity of glycan structures 152

Molecular basis of the host specificity of influenza viruses 155

Profiling of hemagglutinin—glycan interaction by using glycan arrays 156
The glycan motif finding problem 157

Discussion 161

Questions 161

Further Reading 163

Evolution 165

Genome rearrangements 167

Steffen Heber and Brian E. Howard

Review of basic biology 167

Distance metrics and the genome rearrangement problem 171
Unsigned reversals 175

Signed reversals 178

DCJ operations and algorithms for multiple chromosomes 180
Discussion 186

Questions 187

Comparison of phylogenetic trees and search for a central trend in the
“Forest of Life” 189

Eugene V. Koonin, Pere Puigho, and Yuri I. Wolf

The crisis of the Tree of Life in the age of genomics 189

The bioinformatic pipeline for analysis of the Forest of Life 193

Trends in the Forest of Life 195

The NUTSs contain a consistent phylogenetic signal, with independent HGT events 195
The NUTs versus the FOL 198

Discussion: the Tree of Life concept is changing, but is not dead 199
Questions 200

Reconstructing the history of large-scale genomic changes: biological
guestions and computational challenges 201

Jian Ma

Comparative genomics and ancestral genome reconstruction 202

The Human Genome Project 202

1.2
1.3
1.4

2.1
2.2
2.3

3.1
3.2
3.3
3.4

PART IV
12

S U1 A W N =

13

2.1
2.2
2.3

3.1
3.2

4.1
4.2
4.3

Extended contents

Comparative genomics 202

Genome reconstruction provides an additional dimension for comparative genomics 205
Base-level ancestral reconstruction 206

Cross-species large-scale genomic changes 207

Genome rearrangements 207

Synteny blocks 209

Duplications and other structural changes 211
Reconstructing evolutionary history 211

Ancestral karyotype reconstruction 211

Rearrangement-based ancestral reconstruction 212
Adjacency-based ancestral reconstruction 213

Challenges and future directions 217

Chromosomal aberrations in human disease genomes 219
Discussion 221

Questions 221

Phylogeny 225

Figs, wasps, gophers, and lice: a computational exploration of coevolution
Ran Libeskind-Hadas

Introduction 228

The cophylogeny problem 229

Finding minimum cost reconstructions 233
Genetic algorithms 235

How Jane works 237

SeelJanerun 241

Discussion 245

Questions 245

Big cat phylogenies, consensus trees, and computational thinking 248
Seung-Jin Sul and Tiffani L. Williams

Introduction 249

Evolutionary trees and the big cats 250

Evolutionary hypotheses for the pantherine lineage 251
Methodology for reconstructing pantherine phylogenetic trees 252
Implications of consensus trees on the phylogeny of the big cats 254
Consensus trees and bipartitions 254

Phylogenetic trees and their bipartitions 255

Representing bipartitions as bitstrings 256

Constructing consensus trees 256

Step 1: collecting bipartitions from a set of trees 256

Step 2: selecting consensus bipartitions 258

Step 3: constructing consensus trees from consensus bipartitions 261
Discussion 264

Questions 264

227

xiii

Xiv

14

2.1
2.2

4.1

PART YV
15

Ui B W N =

16

11

2.1
2.2
2.3
2.4

5.1
5.2

Extended contents

Phylogenetic estimation: optimization problems, heuristics, and
performance analysis 267

Tandy Warnow

Introduction 268

Computational problems 269

The 2-colorability problem 271

Maximum independent set 274

NP-hardness, and lessons learned 275
Phylogeny estimation 277

Maximum parsimony 277

Discussion and recommended reading 286
Questions 286

Regulatory Networks 239

Biological networks uncover evolution, disease, and gene functions
NataSa Przulj

Interaction network data sets 293

Network comparisons 295

Network models 300

Using network topology to discover biological function 303

Network alignment 306

Discussion 312

Questions 312

Regulatory network inference 315

Russell Schwartz

Introduction 315

The biology of transcriptional regulation 317

Developing a formal model for regulatory network inference 320
Abstracting the problem statement 320

An intuition for network inference 322

Formalizing the intuition for an inference objective function 323
Generalizing to arbitrary numbers of genes 332

Finding the best model 333

Extending the model with prior knowledge 335
Regulatory network inference in practice 337

Real-valued data 338

Combining data sources 339

Discussion and further directions 341

Questions 342

Glossary 344
Index 350

291

Higv

gt

PREFACE

This book aims to convey the fundamentals of bioinformatics to life science students
and researchers. It aims to communicate the computational ideas behind key methods
in bioinformatics to readers without formal college-level computational education. It
is not a “recipe book: it focuses on the computational ideas and avoids technical
explanation on running bioinformatics programs or searching databases. Our expe-
rience and strong belief are that once the computational ideas are grasped, students
will be able to use existing bioinformatics tools more effectively, and can utilize their
understanding to advance their research goals by envisioning new computational goals
and communicating better with computational scientists.

The book consists of self-contained chapters each introducing a basic compu-
tational method in bioinformatics along with the biological problems the method
aims to solve. Review questions follow each chapter. An accompanying website
(www.cambridge.org/b4b) containing teaching materials, presentations, questions, and
updates will be of help to students as well as educators.

The book is aimed at life science undergraduates; it does not assume that the reader has a
background in mathematics and computer science, but rather introduces mathematical
concepts as they are needed. The book is also appropriate for graduate students and
researchers in life science and for medical students. Each chapter can be studied
individually and used individually in class or for independent reading.

XV

XVi

v

Preface

In 1998, Stanford professor Michael Levitt reflected that computing has changed
biology forever, even if most biologists did not know it yet. More than a decade
later, many biologists have realized that computational biology is as essential for
this century’s biology as molecular biology was in the last century. Bioinformatics®
has become an essential part of modern biology: biological research would slow down
dramatically if one suddenly withdrew the modern bioinformatics tools such as BLAST
from the arsenal of biologists. We cannot imagine forward-looking biological research
that does not use any of the vast resources that bioinformatics researchers have made
available to the biomedical community.

Bioinformatics resources come in two flavors: databases and algorithms. Thousands
of databases contain information about protein sequences and structures, gene anno-
tations, evolution, drugs, expression profiles, whole genomes and many more kinds of
biological data. Numerous algorithms have been developed to analyze biological data,
and software implementations of many of these algorithms are available to biologists.
Using these resources effectively requires a basic understanding of what bioinformat-
ics is and what it can do: what tools are available, how best to use them and to interpret
their results, and more importantly, what one can reasonably hope to achieve using
bioinformatics even if the relevant tools are not yet available.

Despite this richness of bioinformatics resources and methods, and although sophis-
ticated biomedical researchers draw on these resources extensively, the exposure of
undergraduates in biology and biochemistry, as well as of medical students, to bioin-
formatics is still in its infancy. The computational education of biologists has hardly
changed in the last 50 years. Most universities still do not offer bioinformatics courses
to life sciences undergraduates, and those that do offer such courses struggle with the
question of how and what to teach to students with limited computational culture. In
the absence of any preparation in computer science, the generation of biologists that
went to universities in the last decade remains poorly prepared for the computational
aspects of work in their own discipline in the decades to come. Similarly, medical
doctors (who will soon have to analyze personal genomes or blood tests that report
thousands of protein levels) are not prepared to meet the computational challenges of
future medicine.

Biomedical students typically have a very basic computational background, which
leads to a serious risk that bioinformatics courses — when offered — will become
technical and uninspired. The software tools are often taught and then used as “black

1 Here and throughout the book, we use the terms bioinformatics and computational biology interchangeably.

Preface

boxes,” without deeper understanding of the algorithmic ideas behind them. This can
lead to under-utilization or over-interpretation of the results that such black-box use
produces. Moreover, the students who study bioinformatics at this level will have a
much smaller chance of coming up with computational ideas later in their careers when
they carry out their own biomedical research. It is therefore essential, in our opinion,
that biologists be exposed to deep algorithmic ideas, both in order to make better use
of available tools that rely on these ideas, and in order to be able to develop novel
computational ideas of their own and communicate effectively with computational
biologists later in their careers.

We and others have argued for a revolution in computational education of biologists?
and noted that the mathematical and computational education of other disciplines have
already undergone such revolutions with great success. Physicists went through a
computational revolution 150 years ago, and economists have dramatically upgraded
their computational curriculum in the last 20 years. As a result, paradoxically, the
students in these disciplines are much better prepared for the computational challenges
of modern biomedical research than are biology students. Moreover, whatever little
mathematical background biologists have, it is mainly limited to classical continuous
mathematics (such as Calculus) rather than discrete mathematics and computer science
(e.g. algorithms, machine learning, etc.) that dominate modern bioinformatics. In 2009
we thus came up with a radical prophecy® that the education of biologists will soon
become as computationally sophisticated as the education of physicists and economists
today. As implausible as this scenario looked a few years ago, leading schools in
bioinformatics education (such as Harvey Mudd or Berkeley) are well on the way
towards this goal.

The time has come for biology education to catch up. Such change may require
revising the contents of basic mathematical courses for life science college students, and
perhaps updating the topics that are taught. Students’ understanding of bioinformatics
will benefit greatly from such a change. In parallel, dedicated bioinformatics classes
and courses should be established, and textbooks appropriate for them should be
developed.

Most undergraduate bioinformatics programs at leading universities involve a
grueling mixture of biological and computational courses that prepare students for
subsequent bioinformatics courses and research. As a result, some undergraduate
bioinformatics courses are too complex even for biology graduate students, let alone

2 W. Byalek and D. Botstein. Introductory science and mathematics education for 21st-Century biologists.
Science, 303:788-790, 2004.
P. A. Pevzner. Educating biologists in the 21st century: Bioinformatics scientists versus bioinformatics
technicians. Bioinformatics, 20:2159-2161, 2004.

3 P. A. Pevzner and R. Shamir. Computing has changed biology — Biology education must catch up. Science,
325:541-542, 2009.

Xvii

Xviii

v

Preface

undergraduates. This causes a somewhat paradoxical situation on many campuses
today: bioinformatics courses are available, but they are aimed at bioinformatics under-
graduates and are not suitable for biology students (undergraduate or graduate). This
leads to the following challenge that, to the best of our knowledge, has not yet been
resolved:

Pedagogical Challenge. Design a bioinformatics course that (i) assumes minimal computa-
tional prerequisites, (ii) assumes no knowledge of programming, and (iii) instills in the students
a meaningful understanding of computational ideas and ensures that they are able to apply
them.

This challenge has yet to be answered, but we claim that many ideas in bioinformat-
ics can be explained at an intuitive level that is often difficult to achieve in other
computational fields. For example, it is difficult to explain the mathematics behind
the Ising model of ferromagnetism to a student with limited computational culture,
but it is quite possible to introduce the same student to the algorithmic ideas (Euler
theorem and de Bruijn graphs) behind the genome assembly. Thus, we argue that the
recreational mathematics approach (so brilliantly developed by Martin Gardner and
others) coupled with biological insights is a viable paradigm for introducing biologists
to bioinformatics. This book is an initial step in that direction.

Each chapter describes the biological motivation for a problem and then outlines a
computational approach to addressing the problem. Chapters can be read separately,
as each introduces any needed computational background beyond basic college-level
knowledge.

The range of biological topics addressed is quite broad: it includes evolution,
genomes, regulatory networks, phylogeny, and more. The computational techniques
used are also diverse, from probability and graphs, combinatorics and statistics to
algorithms and complexity. However, we made an effort to keep the material accessi-
ble and avoid complex computational details (those can be filled in by the interested
reader using the references). Figure 1 aims to show for each chapter the biological
topics it touches upon and the computational areas involved in the analysis. Naturally,
many chapters involve multiple biological and computational areas. Not surprisingly,
evolution plays a role in almost all the topics covered, following the famous quote
from Theodosius Dobzhansky, “Nothing in biology makes sense except in the light of
evolution.”

Preface

Genomes

Probability &
statistics

Gene transcription
& regulation

Evolution

Phylogeny

Regulatory
networks

Figure 1 The connections between biological and computational topics for each chapter. The
nodes in the middle are chapters, and edges connect each chapter to the biological topics it
covers (right) and to the computational topics it introduces (left).

The pedagogical approach, the style, the length, and the depth of the introduced
mathematical concepts vary greatly from chapter to chapter. Moreover, even the nota-
tion and computational framework describing the same mathematical concepts (e.g.
graph theory) across different chapters may vary. As computer scientists say, this is not
a bug but a feature: we provided the contributors with complete freedom in selecting
the approach that fits their pedagogical goal the best. Indeed, there is no consensus yet
on how to introduce computer science to biologists, and we feel it is important to see
how leading bioinformaticians address the same pedagogical challenge.

How will this book develop?

“Bioinformatics for Biologists” is an evolving book project: we welcome all educators
to contribute to future editions of the book. We envision introduction of computational
culture to the biological education as an ever-expanding and self-organizing process:
starting from the second edition, we will work towards unifying the notation and the
pedagogical framework based on the students’ and instructors’ feedback. Meanwhile,

Xix

XX Preface

i

i

i

the educators have an option of selecting the specific self-contained chapters they like
for the courses they teach.

Since chapters are self-contained, each chapter can be studied or taught individually and
chapters can be followed in any order. One can select to cover, for example, a sample
of topics from each of the five biological themes in order to obtain a broader view,
or cover completely one of the themes for a deeper concentration. Review questions
that follow each chapter are helpful to assimilate the material. Additional resources
available at the website will be helpful to teachers in preparing their lectures and to
students in deeper and broader learning.

The book is accompanied by the website www.cambridge.org/b4b containing teaching
materials, presentations, and other updates. These can be of help to students as well as
educators.

The scientists who contributed to this book are leading computational biologists who
have ample experience in both research and education. Some are biologists who have
became computational over the years, as their computational research needs developed.
Others have formal computational background and have made the transition into
biology as their research interests and the field developed. All have experienced the
need and the difficulty in conveying computational ideas to biology students, and all
view this as an important problem that justifies the effort of contributing to this book.
They are all committed to the project.

ACKNOWLEDGMENTS

This book would not be possible without the generous support of the Howard Hughes
Medical Institute (provided as HHMI award to Pavel Pevzner).

The editors and contributors also thank the editorial team at Cambridge University Press
for their continuous and efficient support at all stages of this project. Special thanks go
to Megan Waddington, Hans Zauner, Catherine Flack, Lauren Cowles, Zewdi Tsegai, and
Katrina Halliday.

Vineet Bafna would like to acknowledge support from the NSF (grant 11S-0810905) and
NIH (grant RO1 HG004962).

Kun-Mao Chao would like to thank Phillip Compeau, Yao-Ting Huang, and Tandy
Warnow for making several valuable comments that improved the presentation. He is
supported in part by NSC grants 97-2221-E-002-097-MY 3 and
98-2221-E-002-081-MY 3 from the National Science Council, Taiwan.

Phillip Compeau and Pavel Pevzner would like to thank Steffen Heber and Glenn Tesler
for very helpful comments, as well as Randall Christopher for his superb illustrations.

Mikhail Gelfand is grateful to Mikhail Roytberg, whose approach to the presentation of
the dynamic programming algorithm he has borrowed; to Andrey Mironov and Anatoly
Rubinov who do not like this approach and have provided very useful comments and
critique; to Phillip Compeau for critique and editing (of course, all remaining errors are
the author’s); and to Pavel Pevzner for the invitation to participate in this volume and
patience over failed deadlines.

He acknowledges support from the Ministry of Education and Science of Russia
under state contract 2.740.11.0101.

Andrey Grigoriev would like to thank Joe Martin, Chris Lee, and the editorial team for
their careful review of his chapter and many helpful suggestions.

Sridhar Hannenhalli would like to acknowledge the support of NIH grant
R01GMO085226.

XXi

XXii

Acknowledgments

Steffen Heber and Brian E. Howard acknowledge the support of many friends and
colleagues, who have contributed to their chapter via extremely helpful discussions and
feedback. They would especially like to thank Pavel Pevzner, Glenn Tesler, Jens Stoye,
Anne Bergeron, and Max Alekseyev. Their work was supported by Education
Enhancement Grant (1419) 2008-0273 of the North Carolina Biotechnology Center.

Eugene V. Koonin, Pere Puigho, and Yuri |. Wolf wish to thank Jian Ma and Pavel
Pevzner for many helpful suggestions. Their research is supported through the
intramural funds of the US Department of Health and Human Services (National
Library of Medicine).

Christopher Lee wishes to thank Pavel Pevzner, Andrey Grigoriev, and the editorial team
for their very helpful comments and corrections.

Ran Libeskind-Hadas recognizes that many people have contributed to the content and
exposition of this chapter. However, any omissions or errors are entirely his
responsibility. Chris Conow, Daniel Fielder, and Yaniv Ovadia wrote the first version of
Jane. The version of Jane used in chapter 12, Jane 2.0, is a significant extension of the
original Jane software and was designed, developed, and written by Benjamin Cousins,
John Peebles, Tselil Schramm, and Anak Yodpinyanee. Professor Catherine McFadden
provided valuable feedback on the exposition of the material in this chapter. The
development of Jane 2.0 was funded, in part, by the National Science Foundation under
grant 0753306 and from the Howard Hughes Medical Institute under grant 52006301.
Finally, Professor Michael Charleston inspired the author to work in this field and has
been a patient and generous intellectual mentor.

Jian Ma would like to thank Pavel Pevzner, Eugene Koonin, Ryan Cunningham, and
Phillip Compeau for helpful suggestions.

NataSa Przulj thanks Tijana Milenkovic and Wayne Hayes for comments on the chapter.

Russell Schwartz would like to thank Pavel Pevzner, Sridhar Hannenhalli, and Phillip
Compeau for helpful comments and discussion. Dr. Schwartz is supported in part by
US National Science Foundation award 0612099 and US National Institutes of Health
awards 1R01AI076318 and 1R01CA140214. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author and do not
necessarily reflect the views of the National Science Foundation or National Institutes
of Health.

Ron Shamir thanks Hershel Safer for helpful comments, and the support of the Raymond
and Beverly Sackler Chair in bioinformatics and of the Israel Science Foundation
(grant no. 802/08).

Haixu Tang acknowledges the support of NSF award DBI-0642897.

Tandy Warnow wishes to thank the National Science Foundation for support through
grant 0331453; Rahul Suri, Kun-Mao Chao, Phillip Compeau, and Pavel Pevzner for
their detailed suggestions that greatly improved the presentation; and Kun-Mao Chao
for assistance with making figures for chapter 14.

Acknowledgments Xxiii
Tiffani L. Williams and Seung-Jin Sul thank Brian Davis for introducing them to the

problem of reconstructing phylogenetic relationships among the big cats. They would

also like to thank Danielle Cummings and Suzanne Matthews for their helpful

comments on improving this work. Funding for chapter 13 was supported by the

National Science Foundation under grants DEB-0629849, 11S-0713618 and
11S-101878.

EDITORS AND CONTRIBUTORS

Pavel Pevzner

Department of Computer Science and
Engineering

University of California at San Diego,
USA

Vineet Bafna

Department of Computer Science and
Engineering

University of California at San Diego,
USA

Kun-Mao Chao

Department of Computer Science and
Information Engineering

National Taiwan University, Taiwan

Phillip Compeau

Department of Mathematics

University of California at San Diego,
USA

XXiv

Ron Shamir
School of Computer Science
Tel Aviv University, Israel

Mikhail Gelfand

Department of Bioinformatics
and Bioengineering

Moscow State University, Russia

Andrey Grigoriev

Department of Biology

Rutgers State University of
New Jersey, USA

Sridhar Hannenhalli
Department of Genetics
University of Maryland, USA

Editors and contributors

Steffen Heber
Department of Computer Science
North Carolina State University, USA

Brian Howard
Department of Computer Science
North Carolina State University, USA

Eugene Koonin

National Center for Biotechnology
Information

National Library of Medicine

National Institutes of Health, USA

Christopher Lee

Department of Chemistry and
Biochemistry

University of California at
Los Angeles, USA

Ran Libeskind-Hadas
Department of Computer Science
Harvey Mudd College, USA

Jian Ma

Department of Bioengineering

University of Illinois at Urbana-
Champaign, USA

NataSa PrZulj
Department of Computing
Imperial College London, UK

Pere Puigho

National Center for
Biotechnology Information

National Library of Medicine

National Institutes of Health,
USA

Russell Schwartz

Department of Biological
Sciences

Carnegie Mellon University,
USA

Seung-Jil Sun
J. Craig Venter Institute
Rockville, USA

Haixu Tang

School of Informatics and
Computing

Indiana University, USA

Tandy Warnow

Department of Computer
Sciences

University of Texas at Austin,
USA

Tiffani Williams

Department of Computer Science
and Engineering

Texas A&M University, USA

Yuri Wolf

National Center for Biotechnology
Information

National Library of Medicine

National Institutes of Health, USA

XXV

A COMPUTATIONAL MICRO PRIMER

This introduction is a brief primer on some basic computational concepts that are used
throughout the book. The goal is to provide some initial intuition rather than formal
definitions. The reader is referred to excellent basic books on algorithms which cover these
notions in much greater rigor and depth.

An algorithm is a recipe for carrying out a computational task. For example, every
child learns in elementary school how to perform long addition of two natural
numbers: “add the right-most digits of the two numbers and write down the sum as
the right-most digit of the result. But if the sum is 10 or more, write only the
right-most digit and add the leading digit to the sum of the next two digits to the left,
etc.” We have all learned similar simple procedures for long subtraction,
multiplication and division of two numbers. These are all actually simple algorithms.
Like any algorithm, each is a procedure that works on inputs (two numbers for the
problems above) and produces an output (the result). The same procedure will work
on any input, no matter how long it is. While we can carry out simple algorithms on
small inputs by hand, computers are needed for more complex algorithms or for
longer inputs. As with long addition, a complex task is broken down into simple steps
that can be repeated many times, as needed. Algorithms are often displayed for
human readers in a short form that summarizes their salient features. One aspect of
this simplified representation is that a repeated sequence of steps may be listed

only once.

XXVi

A computational micro primer

A basic question in studying algorithms is how efficient they are. For a given input,
one can time the computation. Since the time depends on the computer being used, a
better understanding of the algorithm can be gained by counting the operations
(addition, multiplication, comparison, etc.) performed. This number will be different
for different inputs. A common way to evaluate the efficiency of a method is by
considering the number of operations required as a function of the input length. For
example, if an algorithm requires 15n? operations on an input of length n, then we
know how many operations will be needed for any input. If we know how many
operations our computer performs per second, we can translate this to the running
time on our machine.

Suppose our algorithm requires 15n? 4 20n + 7 operations on an n-long input. As n
grows larger, the contribution of the lower-order terms 20n + 7 will become tiny
compared to the 15n2. In fact, as n grows larger, the constant 15 is not very important
when it comes to the rate of growth of the number of operations (although it affects
the run time).* Computer scientists prefer to focus only on the main trend and
therefore say that an algorithm that takes 15n? 4+ 20n + 7 operations requires “O(n?)”
time (pronounced “oh of n squared”), or, equivalently, is “an O(n?) algorithm.” This
means that the algorithm’s running time increases quadratically with the input length.?

Some problems can be solved using any of several algorithms, and the O notation is
used to decide which algorithm is better (i.e. faster). So an O(n) algorithm is better
than an O(n?) algorithm, which in turn is better than an O(2") algorithm. This latter
complexity, which is called exponential (since n appears in the exponent), is

L Computer scientists do not worry too much about the difference between n? and 100n2, but they greatly worry
about the difference between n3 and 100n2. They will typically prefer 100n2 to n3, since for all inputs of
length >100 the latter will require more time.

2 To be precise, “O(n?)” means that the algorithm’s run time grows not more than quadratically. To specify that
the run time is exactly quadratic, complexity theory uses the notation “®(n?).” We shall ignore these
differences here.

XXVii

xxviii

A computational micro primer

particularly nasty: as the problem size changes from n to n + 1, the run time will
double! In contrast, for an O(n) algorithm the run time will grow by O(1), and for an
O(n?) algorithm it will grow by O(2n + 1). So no matter how fast our computer is,
with an algorithm of exponential complexity we shall very quickly run out of
computing time as the problem grows: if the problem size grows from 30 to 40, the
run time will grow 1024-fold! The main distinction is therefore between polynomial
algorithms, i.e. those with complexity O(n€) for some constant c, and exponential
ones.

Computer scientists often try to develop the most efficient algorithm possible for a
particular problem. A primary challenge is to find a polynomial algorithm. Many
problems do have such algorithms, and then we worry about making the exponent ¢
in O(n®) as small as possible. For many other problems, however, we do not know of
any polynomial algorithm. What can we do when we tackle such a problem in our
research? Computer scientists have identified over the years thousands of problems
that are not known to be polynomial, and in spite of decades of research currently
have only exponential algorithms. On the other hand, so far we do not know how to
prove mathematically that they cannot have a polynomial algorithm. However, we
know that if any single problem in this set of thousands of problems has a polynomial
algorithm, then all of them will have one. So in a sense all these problems are
equivalent. We call such problems NP-complete. Hence, showing that your problem is
NP-complete is a very strong indication that it is hard, and unlikely to have an
algorithm that will solve it exactly in polynomial time for every possible input.®

So what can one do if the problem is hard? If a problem is NP-complete this means
that (as far as we know) it has no algorithm that will solve every instance of the
problem exactly in polynomial time. One possible solution is to develop
approximation algorithms, i.e. algorithms that are polynomial and can approximately
solve the problem, by providing (provably) near-optimal but not necessarily always
optimal solutions. Another possibility is probabilistic algorithms, which solve the

3 Note that there are problems that were proven not to have any polynomial time algorithms, but they are outside
the set of established NP-complete problems.

A computational micro primer XXiX

problem in polynomial average time while the worst-case run time can still be
exponential. (This would require some assumptions on the probability distribution of
the inputs.) Yet another alternative that is often used in bioinformatics is heuristics —
fast algorithms that aim to provide good solutions in practice, without guaranteeing
the optimality or the near-optimality of the solution. Heuristics are typically
evaluated on the basis of their performance on the real-life problems they were
developed for, without a theoretically proven guarantee for their quality. Finally,
exhaustive algorithms that essentially try all possible solutions can be developed, and
they are often accompanied by a variety of time-saving computational shortcuts.
These algorithms typically require exponential time and thus are only practical for
modest-sized inputs.

GENOMES

(7. CHAPTERONE

S
b T iese |

- -
Rt Tt
EEAd.
-

Identifying the genetic basis
of disease

Vineet Bafna

It is all in the DNA. Our genetic code, or genotype, influences much about us. Not only are
physical attributes (appearance, height, weight, eye color, hair color, etc.) all fair game for
genetics, but also possibly more important things such as our susceptibility to diseases,
response to a certain drug, and so on. We refer to these "observable physico-chemical traits
as phenotypes. Note that “to influence” is not the same as “to determine” — other factors
such as the environment one grows up in can play a role. The exact contribution of the
genotype in determining a specific phenotype is a subject of much research. The best we can
do today is to measure correlations between the two. Even this simpler problem has many
challenges. But we are jumping ahead of ourselves. Let us review some biology.

"

Background

Why do we focus on DNA? Recall that our bodies have organs, each with a specific
set of functions. The organs in turn are made up of tissues. Tissues are clusters
of cells of a similar type that perform similar functions. Thus, it is useful to work
with cells because they are simpler than organisms, yet encode enough complexity
to function autonomously. Thus, we can extract cells into a Petri dish, and they can
grow, divide, communicate, and so on. Indeed, the individual starts life as a single
cell, and grows up to full complexity, while inheriting many of its parents’ phenotypes.

Bioinformatics for Biologists, ed. P. Pevzner and R. Shamir. Published by Cambridge University Press.
© Cambridge University Press 2011.

4 Partl Genomes

There must be molecules that contain the instructions for making the body, and these
molecules must be inherited from the parents. The cells have smaller subunits (nucleus,
cytoplasm, and other organelles) which contain an abundance of three molecules: DNA,
RNA, and proteins. Naturally, these molecules were prime candidates for being the
inherited material. Of these, proteins and RNA were known to be the machines in the
cellular factories, each performing essential functions of the cell, such as metabolism,
reproduction, and signal transduction.

This leaves DNA. The discovery of DNA as the inherited material, followed by
an understanding of its structure and the mechanism of inheritance, form the major
discoveries of the latter half of the twentieth century. DNA consists of long chains
of four nucleotides, which we abbreviate as A, C, G, T. Portions of the nucleotides
(genes) contain the code for manufacturing specific proteins, as well as the regulatory
mechanisms that interpret environmental signals, and switch the production on or
off. Interestingly, we have two copies of DNA, one from each of our parents. In this
way, we produce a similar set of proteins as our parents, and therefore display similar
phenotypes, including susceptibility to some diseases. Of course, as we inherit only a
randomly sampled half of the DNA from each parent, we are similar but not identical
to them, or to our siblings.

On the other hand, if all DNA were identical, it would not matter where we inherited
the DNA from. In fact, DNA mutates away from its parent. Often, these mutations are
small changes (insertions, substitutions, and deletions of single nucleotides). There are
also many additional forms of variation, which are more complex, and include many
large-scale changes that are only now being understood. In this chapter, however, we
will focus on small mutations as the only source of variation. If we sample DNA
from many individuals at a single location (a locus) we often find that it is polymorphic
(contains multiple nucleotide variants). Clearly, if these mutations occur in a gene, then
the protein encoded by the DNAcan also change, possibly changing some functional
trait in the organism. Therefore, different variants at a locus sometimes present different
phenotypes, and are often referred to as alleles, after Mendel. Loci with multiple alleles
are variously called “segregating sites” (they separate the population), “variants”, or
“polymorphic markers.” If these variants affect single nucleotides, they are also called
single nucleotide polymorphisms or SNPs.

We start with a basic instance of a Mendelian mutation: individuals present a
phenotype if and only if they carry the specific mutation. Our goal is to identify
the mutation (or the corresponding genomic locus) from the set. Figure 1.1a shows
this with three candidate variants represented by <, A, and o. A simple approach to
identifying the causal mutation is as follows: (i) determine the genotypes of a collection
of individuals that present the phenotype (cases), and those that do not (controls);
(ii) align the genotypes of all individuals, and identify polymorphic locations; (c) for

1 Identifying the genetic basis of disease

—] " case@
A J
= W 4 il "
rnges (]
— Lo T e
A
| opwia? .,,\u.aﬂ""f‘mw"::wmm‘w“w 8.
@ - Contro i et ST ey S
o g motior®
—— O B
O - _‘M‘.M s 08
:

The SCKO gene

(a) (b)

Figure 1.1 Genetic association basics. (a) A Mendelian mutation < that is causal for a
phenotype. Other “neutral” variants are nearby. (b) Popular news highlighting the discovery
of the gene responsible for a phenotype. In many cases, all that is observed is a correlation
between a mutation and the phenotype. The causality is assumed based on some knowledge
of the function of the protein encoded by the gene. Figure reprinted by permission.

(© Telegraph Media Group Limited 2011.

each polymorphic location, check for a correlation of the variants with case/control
status. In Figure 1.1, we see that the occurrence of the ¢ correlates highly with the
case status and conclude that the mutation is causal. Given that the mutation lies in
the scko gene, we conclude that scko is responsible. The popular media is peppered
with accounts of discoveries of genes responsible for a phenotype.

The intelligent reader will immediately question this premise because these “discov-
eries” are often not the final confirmation, but simply an observed correlation between
the occurrence of the mutation and the phenotype. First, what is the chance that we
are even testing with the causal mutation? Typically, genotypes are determined using
the technology of DNA chips. The individual DNA is extracted (often from saliva or
serum) and washed over the chip. The chip allows us to sample, in parallel, close to
0.5-1 M polymorphic locations, and determine the allelic values at these locations.
This fast and inexpensive test allows us to investigate a large population of cases and
controls, and makes genetic association possible. However, we do not test each location
(there are three billion). It is very possible that the causal mutation is not even sampled,
and that we may not find correlations even when they exist. Second, even if we do find

6 Partl Genomes

o

a correlation, there is no guarantee that we have found the right one. Surely, a simple
correlation at one of 1 M markers could have arisen just by chance. How can that be a
clue towards the causal gene?

The answer might surprise some. Nature helps us in two ways: first, it establishes a
correlation between SNPs that are close to the causal mutation, so any of the SNPs in
the region (that contains the relevant gene) are correlated with the mutation. Second, it
“destroys” the correlation as the distance from the causal mutation increases. Therefore,
a correlation is indeed a strong suggestion that we are in the right location, and any
gene in that region is worth a closer look. The next section is devoted to an explanation
of the underlying genetic principles, and is followed by a description of the statistical
tests used to quantify the extent of the correlation.

Of course, while the basic premise is correct, and simply stated, it is (like everything
else in biology) simplistic. In the following sections, we look at issues that can confound
the statistical tests for association, and how they are resolved. The resolution of these
problems requires a mix of ideas from genetics, statistics, and algorithms.

Dobzhansky famously said that “nothing in biology makes sense except in the light
of evolution,” and that is where we will start. You might recall from your high-school
biology that each of us has two copies of each chromosome, each inherited from one
parent." Having two parents makes it tricky to study the ancestral history (the geneal-
ogy) of an individual. Therefore, we work with a population of chromosomes, where
every individual does have a single parent. In this abstraction, the individual is simply
“packaging” for the chromosomes, two at a time. We also make the assumption (absurd,
but useful) that all individuals reproduce at the same time. Finally, we assume that the
population size does not change from generation to generation. Figure 1.2a shows the
basic process. Time is measured in reproductive generations. In each generation, an
individual chromosome is created by “choosing” a single parent from the previous
generation. To see how this helps, go back in time, starting with the extant popula-
tion. Every time two chromosomes choose the same parent (coalesce), the number of
ancestral chromosomes reduces by 1, and never increases again. Once this ancestry
reduces to a single chromosome (the most recent common ancestor, or MRCA), we
can stop because the history prior to that event has been lost forever. As each individ-
ual has a single parent, the entire history from the MRCA to the extant generation is

1 Not quite, but we will consider recombinations in a bit.

1 Identifying the genetic basis of disease

Time Current (extant) population
— — — —
A==
—= § ===
= - = = X

(a) Genealogy of a chromosomal population

—_— —O e OO — P O — i OO — i 3O
A R A e —d D 0
—cn—»—m‘—co

\o- — —- _—

' -3 o »o—0o

— s “—»-A—D-d-o—o.q.o—o.

— — — £0—a

= = DZ:—‘D»—‘”
4—»—“»—%*—@ —) - D

) —Q)—»—Obiz—m

— — —

& 2 e =y OO — o -

—_—— — 4—0-—>4—0-44—a £H—a
—_— - — — J £L—20

(d) Causal and correlated mutations

Figure 1.2 An evolving population of chromosomes. (a) The Wright Fisher model is an
idealized model of an evolving population where the number of individuals stays fixed from
generation to generation, and each child chooses a single parent uniformly from the previous
generation. (b) Mutations are inherited by all descendants, and drift until they are fixed or
eliminated. (c) We only consider the history that connects the existing population to its most
recent common ancestor. (d) The underlying data are presented as a SNP matrix (with a hidden
genealogy). The genealogy leads to correlations between SNPs.

described by a tree (the coalescent tree). Other genealogical events that occurred after
MRCA but are not part of the coalescent tree are useless because the lineages died out
before reaching the current generation (Figure 1.2c). The only historical events that
will concern us are ones in the underlying coalescent tree.

8 Partl Genomes

Now, let us consider mutations. Each chromosome is identical to its parent, except
when a mutation modifies a specific location. Given the short time frame of evolution of
the human population relative to the number of mutating positions, most locations are
modified at most once in history. To simplify things, we assume that this is true for all
variants (the infinite sites assumption): once a location mutates to a new allelic value,
it maintains that allele, and all descendants of the chromosome inherit the mutation.
As individuals choose their parents and inherit mutations, the frequency of mutations
changes (drifts) from generation to generation. This principle is illustrated in Fig-
ure 1.2b. The mutation denoted by the blue o arises before the MRCA, and is therefore
fixed in the current population. On the other hand, A arises in a lineage that was elim-
inated and is not observed. Other mutations, such as the O, arose sometime after the
MRCA, and present as polymorphisms when sampled in the existing population. This
is illustrated in Figure 1.2d. Here, we have removed the generation information, and
represent time simply by the branch-lengths. When we sample a population with DNA
microchips, we create a matrix of polymorphisms; rows correspond to individuals,
columns represent polymorphic locations, and the entries represent allelic values rep-
resenting the consequence of historical mutations on the coalescent tree. The tree itself
is invisible, although likely trees can be reconstructed using phylogenetic techniques.

What is the point of all this? It is simply that the underlying tree imposes a correlation
between mutations. Let the black circle e in Figure 1.2d represent a causal mutation.
Individuals display a phenotype if and only if they carry this mutation. However, every
mutation in this matrix is correlated to some extent. For example, the presence of the
yellow mutation (which is on the same branch) is equally predictive of the phenotype,
and the red © (which occurs on a different lineage) implies that the individual does not
carry the phenotype. We call this the principle of linkage: mutations that are part of an
evolutionary lineage are correlated. Thus, it is not necessary to sample all mutations to
identify the gene of interest. However, this is not enough. If all SNPs on the chromosome
are correlated (albeit to varying degree), they cannot help to narrow the search for
the causal locus. We are helped again by the natural phenomenon of recombination.
In meiosis (production of gametes), a crossing over of the two parental chromosomes
might occur. The child therefore gets a mix of the two parental chromosomes, as shown
schematically in Figure 1.3a,b. Now consider a population. Recombination events
between two locations change the underlying coalescent tree. With increasing distance
between loci, the number of historical recombination events increases and destroys the
correlations. In Figure 1.3c, the yellow and black o are proximal and remain correlated.
However, recombination events destroy the correlations (the linkage) between the
red O and causal (black) e. This establishes a second principle: correlation between
mutations is destroyed with increasing distance between loci due to the accumulation
of recombination events.

1 Identifying the genetic basis of disease

Synapsis: Pairing of
homologous chromosomes

——
Paternal Maternal
| e —
P
——80
Crossing over l
(a) (b)
——en- _ - —_
—_——) ——————, *—----—80
~ - — — —60 —-—80
----- —90 *—--—00
—-—80 — - —80
(© o =
o
*—--—— *—----——

Figure 1.3 Recombination events change genealogical relationships, and destroy correlation
between SNPs. (a) Crossover during meiosis. (b) Schematic of a crossover and its effect of
linkage between mutations. (c) Multiple recombination events destroy linkage between SNPs.

Statistical tests

Let us digress and consider a simple experiment to statistically test for correlation
between two events: thunder and lightning. It is intuitively clear that the two are
correlated, butwe will formalize this. Letx; = 1 indicate the event that we saw lightning
on the ith day. Respectively, let y; = 1 indicate the event that we heard thunder on
the ith day. Let Py (respectively, Py) denote Pr(x; = 1) (respectively, Pr(y; = 1)) for
a randomly chosen day. Assume that we see lightning 35 days in a year, so that Py =
35/365 ~ 0.1. Likewise, let Py, >~ 0.1. What is the chance of seeing both on the same
day? Formally, denote the chance of joint occurrence by Pyy = Pr(x; = Land y; = i).
If the two were not correlated, we would not observe both very often. In other words,

10 Partl Genomes

Pxy = PxPy >~ 0.01, and so only 3—4 days a year are expected to present both events.
If we observe 30 days of thunder and lightning, then we can conclude that they are
correlated. What if we observe 10 days of thunder and lightning? This is the question
we will consider.

Denote two loci as x, y, and let x; denote the allelic value for the ith chromosome.
If we make the assumption of infinite sites, x; will take one of two possible allelic
values. Without loss of generality, let x; € {0, 1}. The generalization to multi-allelic
loci will be considered in Section 4.2. Let P, denote Pr(x; = 1) for arandomly sampled
chromosomei at locus x. Correspondingly, Px = 1 — Py represents the probability that
xj = 0. Denote the joint probabilities as

Pyy = Pr(xi = 1,y; = 1) = PxPr(yi = 1|x; = 1)
P;y = Pr(xi =0, Vi = 1) = PQPV(Yi = 1|Xi = O)

and so on. If x, y are proximal then Pr(y; = 1|x; = 1) is very different from P,. See,
for example, the black and yellow o in Figure 1.3c. By contrast, if x, y are very far
apart so that recombination events have destroyed any correlation, then

Pxy > PxPy
Pgy =~ PgPy.

As the recombination events destroy correlation over time, we use the term Linkage
Equilibrium to denote the lack of correlation. The converse of this, often termed
Linkage Disequilibrium (LD), or association, describes the correlation between the
proximal loci. A straightforward statistic to measure LD(x, y) is given by

D = Py, — PPy. (1.1)
Note that the choice of allele does not matter. The interested reader can verify that

IDI = ‘ny— Pxpy|

= |Piy — PiPy|
= |Pxy — PuPy|
= | Piy — PiPy.

The larger the value of |D|, the greater the correlation. Apart from its historical
significance, the D-statistic is used more as a relative, rather than an absolute measure.
Instead, a scaled statistic D’ is defined as

D
D — D _ min{Px Py, P, Py} D=0 (1.2)
5 . .
Dimax ~min(Py Py. P Py D<0

1 Identifying the genetic basis of disease

The normalized statistic, D’, ranges between 0 and 1, with 0 implying no correlation,
and 1 implying perfect correlation. Ultimately, these statistic values are still numbers,
however, and it might be hard to say how much better is D’ = 0.7 (say) than D = 0.6.
To address these questions, statisticians attempt to compute a p-value for the statistic.
The p-value of D = 0.6 is the probability that a random experiment would yield a
value of D > 0.6 just by chance if the null hypothesis of D = was true.

To compute the p-value here, we have to use a different normalization for reasons
that will become clear. Define LD(X, y) as

_ D
P /PP,y
The statistic p is closely related to the x? test of independence between two variables.
Recall that with n chromosomes, the number of chromosomes i withx; = landy; = 1

is given by Pxyn. The observations of joint occurrences for x, y can be expressed by
the 2 x 2 table:

(1.3)

X\y 0 1 Total

0 Pxyn | Pxyn Psn

1 nyn nyn Pxn

Total | Pyn | Pyn n

If x, y are not correlated (null hypothesis), then the number of individuals in the first
cell is expected to be

Pzyn = Py Pgn

and so on, for all cells. The statistic (Pxyn — Py Pyn)/\/m behaves approximately
like a normal distribution, and the square (Pxyn — Py Pyn)2/Pyx Pyn behaves like a x2
distribution. Under the null hypothesis, the mean value is 0, and the p-value can be
obtained simply by looking at pre-computed tables. Finally, we get a p-value for p?
observing that it is the sum of four x? distributed values, as follows:

> _ (Pxyn—Px Pyn)2 (Pxyn — PxPyn)? (Pxyn — PxPyn)? (Pxyn — PxPyn)?

Xy Py Py PPN P, Pyn P Pyn
D?n

=——— =p°n. (1.4)

A low p-value implies that our assumption is incorrect, implying Linkage Disequilib-

rium or correlation. The actual inference (correlation, or not) based on probabilities

conforms to a “frequentist” interpretation of the data, and is not universally accepted.
Nevertheless, the reader will agree that it is a useful tool for interpretation.

11

12 Part| Genomes

gy

Finally, we are ready to put it all together and identify the locus responsible for a
specific phenotype. Assume there is a phenotype with a single causal mutation at locus
d. For individual i, di = 1 implies case status; otherwise, the individual is control. Our
question can be reformulated as

Find the location of d.
OR,-

Find known polymorphisms that are located close to d, and are statistically associated.
OR,-

Find all polymorphisms x s.t. LD(x, d) is high.

However, we have already provided an answer to the last question above. The test
described here is but one of a battery of different statistical tests that can be performed.
How well a specific test works is calculated by taking a known set (perhaps simulated)
and measuring the accuracy of positive and negative results of the test. The test’s power
(1 - false negative rate) after fixing the type | error (false positive) rate can quantify
this.

Let us extend the basic methodology. The actual mutation at d need not be considered,
and may not even exist in a Mendelian sense. To generalize, the allelic value d; = 1
simply predisposes an individual towards the case status. Define the relative risk

_ Pr(casg[di = 1)
"~ Pr(casg|d; = 0)°

As long as RR > 1, a similar test of association will work.

Recall that phenotype is any trait that can be measured. We assumed categorical values
for the phenotype (Case/Control). This is reasonable in some cases (occurrence or
non-occurrence of disease), but less applicable to others. For example, obesity (mea-
sured by the Body Mass Index), blood pressure (measured by the systolic or diastolic
blood pressure measurements), and height all represent phenotypes with continuous
values. Testing for association can be somewhat tricky in these circumstances. One
simple solution is the categorization of continuous values: for example, all diastolic

1 Identifying the genetic basis of disease

140
120+ s
100

80 -

¢ DBP
60 -

L 24
440 SBIDO W0

40 ~

20 A

x=0 x=1

Figure 1.4 Distribution of diastolic blood pressure segregated by the allelic value at locus x.
The estimated mean and variances of either class are (X, Sé) = (103, 109), (X4, 512) =
(62, 76) for n = 35 individuals in each class. The large difference between the means, and
the relatively low spread of each distribution, indicates that DBP is correlated with the allelic
value at the locus.

blood pressure values over 90 can be considered cases; else, controls. Another way to
approach this is through analysis of variance (ANOVA) tests, which we will explain
informally with an example. In this case, there are only two segregating classes, so a
specific ANOVA test, the Student’s t, can be used.

Consider the sketch in Figure 1.4 which plots the diastolic blood pressure (DBP)
readings for individuals with different allelic values at locus x. The readings for
individuals with x = 1 are distinctly higher than the individuals with x = 0, providing
the intuition that allelic values at locus x are correlated with DBP. Is it better to consider
this population as two classes (segregated by the allelic value at x), or as a single
class?

We make the assumption that the DBP values are normally distributed. The estimated
mean and variances of either class are (Xo, S2) = (103, 109), (X1, S?) = (62, 76) for
n = 35 individuals in each class. We would like to know if the two mean values
are significantly different given the underlying variances. Intuitively, an allelic value
of 0 implies that the DBP will be at least 103 — 2,/109 ~ 82. On the other hand,
the DBP for allelic value 1 is rarely greater than 62 + 2+/76 ~ 79. Given that the
allelic values help predict the DBP somewhat tells us that the locus x is associated.

13

14 Part| Genomes

Formally, assuming the null hypothesis of no association between x and DBP, the
t-statistic

Xo — X
T=20 21 (1.5)

sz | 82
Va T

must follow the Student’s t distribution, with 2n — 2 degrees of freedom, and we can
use that to compute a p-value. In this case, the t-statistic is T = 17.8 (df = 68), with
a p-value less than 0.0001, and the correlation is very strong.

The astute reader has undoubtedly noticed a discrepancy. The phenotype is assigned to
an individual containing a pair of chromosomes. However, we are computing associa-
tions against a population of chromosomes. To correct this discrepancy, we consider
the genotype of an individual. Consider a locus x with two allelic values 0,1 in a
population. Each individual belongs to one of three classes, depending on the allelic
pair, 00, 01, and 11. The test for associations can be modified to accommaodate this. For
case—control tests, we have a 3 x 2 contingency table, and can measure significance
using a x? test with 2 degrees of freedom. For continuous variables, an analog of the
t-test for multiple groups (the F-test) is often used.

In fact, these ideas can be extended even further. We had made the assumption that
a location is only mutated once in our history. That may not always be. Each locus
may have between 2 and 4 alleles, with each individual contributing a pair of alleles.
Indeed, there is no reason to restrict ourselves to a single polymorphic locus. We
could consider a chain of proximal loci. Having individuals placed in multiple classes
(bins) with continuous phenotypes is not technically difficult, but often leads to the
problem of under-sampling. The higher the number of bins, the fewer the number of
individuals in each bin, and the higher the chance of a false correlation. We explain
this principle with a simple example. Consider a fair-coin. If we toss 2n coins, and put
them appropriately in two bins, HEADs and TAILS, we expect to see a similar number
(=~ n) of coins in each bin. If the discrepancy is large, we conclude that the coin is
loaded. However, what if we tossed only 1 coin? It must fall in one of the 2 bins,
and the discrepancy is 100%. To get around this, we need to increase the number of
individuals (increasing the cost of the experiment), or decrease the number of bins.
While not possible in this simple example, creative ways to reduce the number of bins
are a large part of the design of statistical tests.

1 Identifying the genetic basis of disease

Let’s revisit the essential ideas from Section 2. One, SNPs are correlated due to
a common evolutionary history, starting from the MRCA. Two, this correlation is
destroyed among distant loci due to recombination events. In this discussion, we were
silent on the actual number of recombination events.

Recombination events can be assumed to be Poisson-distributed, with a rate of
r crossovers per generation per base pair (bp). Consider two loci x,y that are ¢
bp apart, and let D® denote the LD at time t. If the allele frequencies do not
change over generations (the so-called “Hardy—Weinberg equilibrium”), then we can
show

DO =1 -re)DED =1 —re)'DO ~ DO,

Clearly, LD decreases with both time t, and distance £, eventually going to 0 (Linkage
Equilibrium). For two randomly chosen individuals, the common ancestor is many
generations in the past (indeed, by symmetry arguments, we can see that it is very
close to the time of the original MRCA\). In practice, this means that two loci only have
to be 50-100 Kbp apart to reach linkage equilibrium. Therefore, in order for us not to
miss the causal locus, we need to test with a dense collection of markers through the
genome. Until recently, this was prohibitively expensive, and researchers looked for
ways to reduce the number of recombination events so that distant markers remained
in LD.

One approach is to choose individuals who share a recent common ancestor; simply
choose case and control individuals from a family. In the family, the time to MRCA
is small (a few generations), and LD is maintained even over large ¢ (~Mbp). For
every polymorphic marker (SNP) in the family, researchers test whether an allele
cosegregates with the case phenotype. If so, the marker is considered linked. Among
family-based tests, we have tests for linkage, and for association, but we will not
consider these further.

Of course, there is no free lunch here. The long-range LD among family members
means that a sparse collection of markers is sufficient for identifying cosegregating or
linked markers, implying a cheaper test. On the other hand, the sparsity of markers
also implies that after linkage is found, a lot of work needs to be done to zero in on
the causal locus. Often, an association test using a dense map of markers in the region
from unrelated case—control individuals is necessary for fine mapping. Today, with
the ability to use chips to sample multiple locations simultaneously, and to genotype
many individuals, genome-wide tests of association are becoming more common. At
the same time, family-based tests are still worthwhile, as they are often immune to

15

16 Part| Genomes

‘dﬂh’

some of the confounding problems for associations. We will not discuss this in detail,
but the interested reader should look to the section on population substructure and rare
variants.

The underlying principles of genetic association are elegant and simple, and indeed can
be derived using extensions of Mendel’s laws. However, the genetic etiology of complex
diseases is, well, complex, and can confound these tests. Understanding confounding
factors is central to making the right inferences. We mention a few below.

For the test to be successful, it must have a low false-positive (type 1) error rate «,
and high power, defined as 1 — 8, where g is the false-negative rate. Setting a p-value
cutoff for association (as discussed in Section 2) is one way to bound «. Typically, one
would only consider loci x, whose LD with the case—control status has a p-value no
more than «. However, the number of tests (loci) also play into this. For a genome-
wide scan, we are testing at many (m ~ 500 K) independent loci. A straightforward
(Bonferroni) correction is as follows: if the chance of making a false call at a locus is
«a, the chance of making a false call at some locus is ma.

Usually, the strategy is to fix « to some desired value, and to maximize the power
of the test. Here is an informal description of estimating power of a case—control
test. Let P, and P denote the minor allele frequencies (MAF) at a locus in controls
and cases, respectively. The two should be equal in the absence of association, so
one way to restate the association test is to look for loci at which P # P,. What if
there was a small but significant difference? Suppose the number of cases carrying the
minor allele is U. Under the null hypothesis (no association, (P, = P)), U is normally
(N (nPy, /nP,(1 — Py))) distributed. See the blue curve in Figure 1.5. The threshold
for significance is chosen based on the type | error «. Suppose the alternative is true,
so that P # P,. The false-negative rate g can be computed as the probability that U
is drawn from the red curve but just happens by chance to lie before the threshold, so
the null hypothesis cannot be rejected. Formally, the power is the area of the red curve
that lies outside the threshold. With increasing sample size, the distance between the
mean of the two curves (n(P — Py)) increases, while the “spread” of the red curve
(described by the s.d. \/nPy(1 — P,)) does not increase proportionately. Therefore,
power is increased by increasing the sample size n.

5.2

1 Identifying the genetic basis of disease

n(P — P¢)

0.45 .
causal empirical pdf e
null empirical pdf s
04r causal approximated pdf ——
. null approximated pdf ——
0.35]
0.3(
0.251
Threshold for g2
significance Power of
0.151 association
test
0.1}
0.05f
0 L
-6 -4 -2 0 2 o 4 6 8

NPy

Figure 1.5 Power of an association test. P4, P denote the minor allele frequencies at a locus
for controls and cases, respectively. The distribution of minor allele frequencies for controls
and cases is denoted by the blue and red curves. We fail to detect a true association if the
sample is drawn from the red curve, but the minor allele frequency is below the threshold of
rejecting the null hypothesis.

Population substructure

Sickle cell anemia is a disease in which the body makes abnormal (sickle-shaped) red
blood cells, leading to anemia and many related symptoms. If left untreated, the disease
can lead to organ failure and death. It is inherited in a recessive fashion (both alleles
need to be mutated in order to present the phenotype), and is common in people of
African origin. Consider a typical case—control study as in Figure 1.6. Not surprisingly,
a marker in the Duffy locus (which has been implicated previously) shows up with
an association to the phenotype. However, we have made a poor design choice in not
controlling for structure in populations. Without explicit controls, we find that most
case individuals are people of African origin (marked with an A), while most controls
are of European origin. Therefore, markers at the locus responsible for skin color also
show a strong association with the phenotype, and confound the test.

17

18 Part| Genomes

S
«
&
& @
¢ @
° ™
0 1 A
0 0O A
0 0O E
0 1 A
0l A=
1 1 E
0 1 A
0 1 A
0 1 A
_J
1 0O E M
1 0 E
0 1 A
1 1 A
L0 B >
1 0O E
1 0 E
1 0O E
1 0O E
_J

Figure 1.6 Population substructure. As sickle cell anemia is more common in Africans
compared to Europeans, the cases and controls can come from different subpopulations. If
not corrected, any locus that differentiates between the two subpopulations (such as skin
pigmentation) will also correlate with the sickle-cell phenotype, confounding the test.

In general, the problem of population substructure has received much attention.
Clearly, care must be taken to choose cases and controls from the same underlying
population. As can be imagined, migration and recent admixture of populations can
make this difficult, even with self-reported ethnicity. One computational strategy relies
on identifying LD between pairs of markers that are too far apart to have significant
LD. Long-range LD is indicative of underlying population structure. To deal with
population substructure, either we can reduce all observed correlations appropriately,
or partition the populations into subpopulations before testing.

For complex alleles, it could be the case that multiple loci interact to affect the pheno-
type. Figure 1.7 provides a cartoon illustration of such interactions. Here, compensating
mutations in SNPs (T and G, or A and A) allow the encoded proteins to interact, but

1 Identifying the genetic basis of disease

. .TACTCCTACCFT. - - e e oo .. CTGATTCG. .
. .TACTCCAACCTT .« e e e - . GACFAATTCG..
. .TACTCCAACCTT. . - oo on ... GACTAATTCG.. ~ases
- .TACTCCTACCTT - o e e e - GACTGATTCG. -
- .TACTCCAACCTT - -« o e e e - GACTGATTCG. .
. .TACTCCTACCTT -« o e e - GACTAATTCG. .
- .TACTCCTACCTT - - o e e e e GACTAATTCG.. Caserals
- .TACTCCAACCTT- -« o e e e - GACTGATTCG. -
C C

Figure 1.7 Epistatic interactions. Neither x nor locus y show any marginal association with
the phenotype. However, when considered together, the genotype T ... G,and A ... A
correlate perfectly with cases. Such interactions pose computational and statistical challenges
to identifying genotype phenotype correlations.

individual mutations destroy the lock and key mechanism. Therefore, neither locus
X nor y associates individually with the phenotype. However, if we considered x, y
together,the T ... G and A.... A suggest case status for the individual. Epistasis indeed
makes the problem of association much harder. In a genome-wide study with 500 K
markers, we would need to test a very large (2.5 - 1011) number of possible pairs. More
complex k-way interactions would be harder. In addition to increasing the computa-
tional challenge, the large number of tests would also make it far more likely to create
false-positive sets, requiring appropriate statistical corrections.

It can happen that multiple rare variants (RVs) influence a gene phenotype. For exam-
ple, the genomic region upstream of a gene acts as a regulatory switch. Transcription
factors bind to the upstream DNA, and switch the translation of the gene (produc-
tion of protein from the gene encoding) on and off. Any mutation in this region
could destroy a transcription factor binding site, and therefore the phenotype might
be established by a collection of non-specific mutations, each of which has a low fre-
quency but together mediate a large effect (explain the phenotype in a large number of
people).

However, several properties of rare variants make their genetic effects difficult to
detect with current approaches. As an example, if a causal variant is rare (10~% <
MAF < 1071), and the disease is common, then the allele’s Population Attributable
Risk (PAR), and consequently the odds ratio (OR), will be low. Additionally, even

19

qPE,

qPE,

20

Part| Genomes

highly penetrant RVs are unlikely to be in Linkage Disequilibrium (LD) with more
common genetic variations that might be genotyped for an association study of a
common disease. Therefore, single-marker tests of association, which exploit LD-
based associations, are likely to have low power. If the Common Disease Rare Variant
(CDRV) hypothesis holds, a combination of multiple RvVs must contribute to population
risk. In this case, there is a challenge of detecting multi-allelic association between a
locus and the disease.

DISCUSSION

The etiology of most (all?) diseases has a genetic basis. In addition, we display a
number of phenotypes (eye color) that are inherited. Understanding the genetic
basis of phenotypes continues to be a major focus of science today. Until recently,
technological limitations made the process arduous. For instance, the
identification of the gene for cystic fibrosis in 1989 came after a large multi-year
project. Today, with the rapid resequencing of human populations, and an
increasing knowledge of gene functions, we are able to focus on complex
disorders. In this chapter, we discuss the basics of testing by association, and the
problems that can confound these tests.

QUESTIONS

Prove that the LD statistic D for binary alleles does not change depending upon the choice
of allele by showing the following:
DI = |Pxy — PPy| = [Py — PePy| = [Pxy — PuPy| = [Pey — PxPy|.

The statistic D’ is a scaled measure of linkage disquilibrium. Show that0 < D’ < 1.

The locus X has two alleles, 0 and 1. 100 individuals were genotyped at locus X and also
checked for eye color. Their genotypes and eye color segregated as follows: 8 individuals
had (00, green), 38 had (01, green), and the remaining 54 individuals had (11, brown).
genotype 11 had brown eyes. Does locus X associate with eye color?

1 Identifying the genetic basis of disease 21

FURTHER READING

The treatment here is a simplification of extensive literature from statistical
genetics. The basics of the coalesent process can be found in a good review
article by Nordborg [1]. The books by Durrett and also Hein, Schierup, and Wiuf
cover the topics in greater detail [2, 3]. An excellent overview of statistical
association tests is provided by Balding [4].

A classic, although somewhat dated, description of family-based linkage tests
is given in the book by Ott [5]. Most algorithms for linkage are derived from
Elston and Stewart (large pedigrees, few markers) [6], or Lander and Green
(smaller pedigrees, many markers) [7]. The TDT is widely cited as a successful test
for family-based association that is immune to population substructure [8].

Population substructure has been addressed in a number of recent papers, and
remains an area of active research [9, 10]. Evans and colleagues, and Cordell
provide a review of epistasis [11, 12]. Bodmer and Bonilla provide an introduction
to analysis with rare variants [13].

REFERENCES

[1] M. Nordborg. Coalescent theory. In: Handbook of Statistical Genetics. John Wiley & Sons,
2001.

[2] R. Durrett. Probability Models for DNA Sequence Evolution. Springer, New York, 2009.

[3] J. Hein, M. Schierup, and C. Wiuf. Gene Genealogies, Variation and Evolution: A Primer in
Coalescent Theory. Oxford University Press, Oxford, 2005.

[4] D.J. Balding. A tutorial on statistical methods for population association studies. Nat. Rev.
Genet., 7:781-791, 2006.

[5] J. Ott. Analysis of Human Genetic Linkage. The Johns Hopkins University Press, Baltimore,
1991.

[6] R.C. Elston and J. Stewart. A general model for the genetic analysis of pedigree data.
Hum. Hered., 21:523-542, 1971.

[7] E.S. Lander and P. Green. Construction of multilocus genetic linkage maps in humans.
Proc. Natl Acad. Sci. U S A, 84(8):2363-2367, 1987.

[8] R.S. Spielman and W. J. Ewens. The TDT and other family-based tests for linkage
disequilibrium and association. Am. J. Hum. Genet., 59:983-989, 1996.

22 Part| Genomes

[9] A.L. Price, N.). Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick, and D. Reich.
Principal components analysis corrects for stratification in genome-wide association
studies. Nat. Genet., 38:904-909, 2006.

[10] J. K. Pritchard, M. Stephens, and P. Donnelly. Inference of population structure using
multilocus genotype data. Genetics, 155(2):945-959, 2000.

[11] D. M. Evans, J. Marchini, A. P. Morris, and L. R. Cardon. Two-stage two-locus models in
genome-wide association. PLoS Genet., 2:¢157, 2006.

[12] H.J. Cordell. Genome-wide association studies: Detecting gene—gene interactions that
underlie human diseases. Nat. Rev. Genet., May 2009.

[13] W. Bodmer and C. Bonilla. Common and rare variants in multifactorial susceptibility to
common diseases. Nat. Genet., 40(6):695—-701, 2008.

CHAPTERTWO

Pattern identification in a
haplotype block

Kun-Mao Chao

A Single Nucleotide Polymorphism (SNP, pronounced snip) is a single nucleotide variation in
the genome that recurs in a significant proportion of the population of a species. In recent
years, the patterns of Linkage Disequilibrium (LD) observed in the human population reveal a
block-like structure. The entire chromosome can be partitioned into high-LD regions, referred
to as haplotype blocks, interspersed by low-LD regions, referred to as recombination hotspots.
Within a haplotype block, there is little or no recombination and the SNPs are highly
correlated. Consequently, a small subset of SNPs, called tag SNPs, is sufficient to distinguish
the haplotype patterns of the block. Using tag SNPs for association studies can greatly reduce
the genotyping cost since it does not require genotyping all SNPs. We illustrate how to recast
the tag SNP selection problem as the set-covering problem and the integer-programming
problem — two well-known optimization problems in computer science. Greedy algorithms and
LP-relaxation techniques are then employed to tackle such optimization problems. We
conclude the chapter by mentioning a few extensions.

Introduction

A DNA sequence is a string of the four nucleotide “letters” A (adenine), C (cyto-
sine), G (guanine), and T (thymine). The genetic variations in DNA sequences have a
major impact on genetic diseases and phenotypic differences. Among various genetic
variations, the Single Nucleotide Polymorphism (SNP, pronounced snip) is one of the

Bioinformatics for Biologists, ed. P. Pevzner and R. Shamir. Published by Cambridge University Press.
© Cambridge University Press 2011.

23

24 Part| Genomes

Py

sl
sl
sl
sl
sH HHE B

Figure 2.1 A haplotype block containing five SNPs and four haplotype patterns. In this figure,
a blue square stands for a major allele and a red square stands for a minor allele.

N
w
N

most frequent forms and has fundamental importance for disease association and drug
design. A SNP is a single nucleotide variation in the genome that recurs in a significant
proportion of the population of a species. Specifically, a single nucleotide mutation is
called a SNP if its minor allele frequency is no less than a given threshold, say 1%. For
example, a mutation in the genome in which 85% of the population have a Gand the
remaining 15% have an Ais a SNP. Since tri-allelic and tetra-allelic SNPs are very rare,
we often refer to a SNP as a bi-allelic marker: major allele vs. minor allele. Millions
of SNPs have been identified and made publicly available.

In recent years, the patterns of Linkage Disequilibrium (LD) observed in the human
population have revealed a block-like structure. LD refers to the association that
particular alleles at nearby sites are more likely to occur together than would be
predicted by chance. The entire chromosome can be partitioned into high-LD regions
interspersed by low-LD regions. The high-LD regions are usually called “haplotype
blocks,” and the low-LD ones are referred to as “recombination hotspots.” Since there
is little or no recombination within a haplotype block, these SNPs are highly correlated.
Consequently, a small subset of SNPs, called tag SNPs or haplotype tagging SNPs,
is sufficient to categorize the haplotype patterns of the block. It is thus possible to
identify genetic variation without genotyping every SNP in a given haplotype block.
This can greatly reduce the genotyping cost for genome-wide association studies.

In this study we assume that the haplotype blocks have been delimited in advance,
and our objective is to find a minimum set of SNPs which can distinguish all pairs of
haplotype patterns in a given block. Figure 2.1 depicts a haplotype block containing
five SNPs and four haplotype patterns. To determine which haplotype pattern category
asample belongs to, we may genotype all five SNPs in this block. However, it works just
as well if we only genotype SNPs S; and Sy, since their combinations can distinguish
all pairs of haplotype patterns. For example, if both S; and S, are major alleles, the
sample is categorized as haplotype pattern Ps.

2 Pattern identification in a haplotype block

() (b)

P, P, Py P, P, P, Py P,
s;[ll H W | Sl I N N W
Sl 0 N Sl H 0NN
S:[ll H N N Sl H NN
S4|E| S, H H N

sHHHE N ss[lH H W W |

Figure 2.2 Selecting tag SNPs that can distinguish all pairs of haplotype patterns. (a) SNPs S,
and S, form a minimum set of tag SNPs. (b) SNPs Sq, S5, and Ss do not form a set of tag SNPs
since they cannot distinguish the pair Py and P,.

We show that the tag SNP selection problem is analogous to the minimum test
collection problem. We then illustrate how to recast the tag SNP selection problem as the
set-covering problem and solve it approximately by a greedy algorithm. Furthermore,
it can be formulated as an integer-programming problem, and a simple rounding
algorithm can be employed to find its near-optimal solutions. We conclude this chapter
by mentioning a few extensions.

Assume that we are given a haplotype block containing n SNPs and h haplotype
patterns. Let S = {S;, S, ..., S} denote the SNP set and let P = {Py, Py, ..., P}
denote the pattern set. A haplotype block is represented by an n x h binary matrix
M whose entries are either a blue square or a red square, representing the major and
minor alleles, respectively. Figure 2.1 depicts a 5 x 4 haplotype block.

We say that SNP S; can distinguish the pattern pair Pj and Py if M[i, j] # MIi, K],
where 1 <i <nand1l < j <k < h. Inother words, if one pattern contains a major
allele of SNP S;, and the other contains a minor allele of SNP S;, then the two patterns
can be distinguished by S;. For instance, in Figure 2.1, SNP S; can distinguish patterns
P, and P, from P, and P; since P, and P, contain a minor allele of S;, and P, and
P; contain a major allele of S;. The goal of the tag SNP selection problem is to find
a minimum number of SNPs that can distinguish all possible pairwise combinations
of patterns. In Figure 2.2, S; and S, form a set of tag SNPs since they can distinguish
all pairs in P, whereas S;, S;, and Ss do not form a set of tag SNPs since they cannot
distinguish the pair P, and Py.

In fact, the tag SNP selection problem is analogous to the minimum test collection
problem, which arises naturally in fault diagnosis and pattern identification. Given a

26 Part| Genomes

‘JJ..IB/

collection C of subsets of a finite set .A of “possible diagnoses,” the minimum test
collection problem is to ask for a subcollection C' C C such that |C’| is minimized and,
for each pair aj, ax € A, there exists some set (i.e. a test) in C’ that contains exactly
one of them. In other words, such a test can distinguish the pair a;, ax. Take Figure 2.1,
for example. SNP S; can distinguish patterns P; and P, from others, thus we include
{P1, P4} in C. Similarly, each of SNPs S,, S3, S4, and Ss can distinguish a particular
set of patterns from others. It follows that the instance of the minimum test collec-
tion problem for Figure 2.1is A = {Py, P,, Ps, P} and C = {{Py, P4}, {P>}, {Ps, P4},
{P,, P4}, {P3}}. Its minimum subcollection C’ is {{P1, P4}, {P,, P4}} since |C'| = 2 is
minimal and C’ can distinguish all pairs in .A. The corresponding set of tag SNPs for
C’is {S1, S4}.

Unfortunately, the minimum test collection problem has been proved to be NP-
hard, which is a technical term that stands for a class of intractable problems for
which no efficient algorithms have been found. Nevertheless, we may employ some
algorithmic strategies to tackle NP-hard problems by finding near-optimal solutions;
in practice, these solutions are often good enough. In the next section, we show that the
tag SNP selection problem can be reformulated as the set-covering problem, which is
well studied in the field of approximation algorithms. By this reformulation, a simple
greedy method for the set-covering problem can be employed for solving the tag SNP
selection problem. The algorithm may not always deliver an optimal solution, but we
will show that the ratio of its solution to an optimal solution is bounded by a certain
factor.

We now recast the tag SNP selection problem as the set-covering problem. Given a
universal set I/ and a collection C of subsets of I/, the set-covering problem is to find a
minimum-size subcollection of C that covers all elements of 4. It is an abstraction of
many naturally arising combinatorial problems, such as crew scheduling, committee
forming, and service planning. For example, a universal set I/ could represent a set of
skills required to perform a task. Each person in the candidate pool has certain skills
in U. The objective is to form a task force with as few people as possible so that all
the required skills are owned by at least one person in the task force. In other words,
we wish to recruit a minimum number of persons to cover all the requisite skills.
Recall that a haplotype block is represented by an n x h binary matrix M whose
entries are either a blue square (representing a major allele) or a red square (represent-
ing a minor allele). To reformulate the tag SNP selection problem as a set-covering
problem, letd = {(j, k) | 1 < j < k < h} be the set of all possible pairwise haplotype

2 Pattern identification in a haplotype block

N

Can> Ces) Can) Cand
U

Figure 2.3 The elements covered by C;, which correspond to the pairs of haplotype patterns
distinguished by SNP S;.

Figure 2.4 The elements covered by each C; in C.

pattern indexes. LetC = {Cy, Co, ..., Cy}, where C; = {(j, k) | M[i, j] # MIi, k] and
1 < j <k < h} stores the index pairs of haplotype patterns that SNP S; € S can
distinguish. We show that a subset of S forms a set of tag SNPs if and only if its
corresponding subset of C covers all the elements in Z{. Each element in I/ represents
a pair of haplotype patterns needed to be distinguished. If a subset of C covers all the
elements in I/, then its corresponding SNP subset of S forms a set of tag SNPs since
all pairs of haplotype patterns can be distinguished. Conversely, if a subset of S forms
a set of tag SNPs, it can distinguish all pairs of haplotype patterns, which yields that
its corresponding subset of C covers all the elements in 4.

Now let us consider the example given in Figure 2.1. We have four haplotype patterns,
so the universal set ¢/ is {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}, which contains all
the elements to be covered. Since SNP S; can distinguish patterns P, and P4 from
P, and P, we set C; to be {(1, 2), (1, 3), (2, 4), (3, 4)} (see Figure 2.3). SNP S, can
distinguish pattern P, from Py, P3, and P4, so we set C, to be {(1, 2), (2, 3), (2, 4)}.
Figure 2.4 depicts the pairs of haplotype patterns distinguished by each SNP. As a

27

28 Part| Genomes

Figure 2.6 A valid set cover. All elements are covered by C; and Cj.

consequence, the collection C of subsets is {C;, C2, C3, C4, Cs}, where
C1=1{(1.2).(1.3).(2.4). @4}

C2=1{1.2),(2.3), (2.4},

Cs ={(1.3).(1.4).(2.3). (2. 4)}.
Cs=1{(1,2),(1,4),(2,3),(3,4)},and

Cs ={(1.3),(2.3), 3, 4)}.

As shown in Figure 2.2(b), Si, Sy, and Ss do not form a set of tag SNPs since
they cannot distinguish the pair P; and P4. In the corresponding set-covering instance,
element (1, 4) is not covered by Cq, C,, and Cs (see Figure 2.5).

On the contrary, S; and S, form a set of tag SNPs since they can distinguish all pairs
in P. In the corresponding set-covering instance, each element is covered by at least
one set in C (see Figure 2.6).

Now let us consider a greedy method for the set-covering problem. The greedy
algorithm iteratively picks the set that covers the most remaining uncovered elements

2 Pattern identification in a haplotype block

until all elements are covered. In the context of the tag SNP selection problem, the
algorithm iteratively chooses the SNP that distinguishes the most remaining undistin-
guished pairs until all pairs of haplotype patterns are distinguished.

The SET-Cover-GREEDY algorithm takes as an input a universal set I/ and a colletion
C of subsets of /. Let R store the uncovered elements in I/, which is initially set to be
U because all elements are uncovered at the beginning of the procedure. C’ stores the
selected sets and is initialized as an empty set. While R is not empty, we choose the
set Cj e C that can cover the most elements in R. C; would essentially cover the most
uncovered elements in /. Then we include C; in C’ and remove from R the elements
that are covered by it. Repeat this procedure until all elements are covered.

Algorithm: Se-Cover-GRreepy (U4, C)
1 R<U

2 C«¢

3 while R # ¢ do

4 Select a set C; from C that maximizes |C; N R |
5 C' <~ C'U{Cj}

6 R« R- Ci

7 endwhile

8 return(C’

The subcollection of sets, C’, returned by the SET-Cover-GREEeDY algorithm is valid
as long as each element of I/ is covered by at least one set in C. However, the size
of C’ may not always be minimal over all possible valid set covers. For example,
let i ={1,2,3,4,5,6,7,8,9} and C = {Cq, Cy, C3}, where C; = {2, 3,4,5,6, 7},
C,=1{1,2,3,4,5},and C3 = {5, 6, 7, 8, 9}. The greedy algorithm will first pick C;
since it covers the most elements. After this choice, it will also need to pick Cj
followed by C, to form a valid set cover. The resulting C’ is {Cy, C,, C3}. However,
for this instance, the minimum set cover is {C,, C3} since all the elements in I{ can be
covered by C, and C3 without including C;.

Although the SET-Cover-GREEDY algorithm may not always deliver the minimum
set cover, its solution is in fact not too far away from an optimal one. Assume that
C* is an optimal set cover. Let |X| denote the size (cardinality) of a given set X.
We show that |C’| can be bounded by |C*| times a reasonable factor. To calculate the
bound, we distribute the covering cost of a selected set to the elements it covers. For
the example given in the previous paragraph, the covering order of the elements by
the greedy algorithm might be [2, 3, 4,5, 6, 7, 8, 9, 1] because each of the elements in
{2,3,4,5, 6, 7} is covered for the first time by C; in the first iteration, and then {8, 9}
by Cj3 in the second iteration, and {1} by C, in the last iteration. Since C; covers six
uncovered elements, each element in {2, 3, 4, 5, 6, 7} shares a cost of 1/6. Similarly,

29

30 Partl Genomes

"

each elementin {8, 9} shares a cost of 1/2, and the element in {1} shares a cost of 1. The
covering cost for each element in order is [1/6,1/6,1/6,1/6,1/6,1/6,1/2,1/2, 1].
Summing these costs would get 3, which is the size of the set cover, C’, delivered by
the greedy algorithm.

Let [uq, Uy, ..., uy,] be the elements in the order in which they are covered by the
SeT-Cover-GREEDY algorithm. A key observation here is that the cost shared by uy is at
most |C*|/(JU] — k + 1) for 1 < k < |U|. In the iteration when uy is covered, there are
at least |I/| — k + 1 elements still uncovered, and certainly these uncovered elements
can be covered by C*, which gives an average shared cost of |C*|/(|I/| — k + 1). Since
the greedy algorithm covers the most uncovered elements, its shared cost for each
element in any iteration is the minimum. It follows that the cost shared by uy is no
more than |C*|/(|/| — k + 1). In other words, the covering cost for [uy, Uy, ..., Ugg] is
no more than [|C*|/|U], IC*|/(JU]| — 1), ..., |C*|], respectively. Since the size of C’ is
the sum of the costs shared by uy for 1 < k < |U/], we have
[S(l+%+~--+ﬁ)x IC*|. (2.1)

The series1+1/2 4 .-+ ﬁ is called the harmonic series. It grows very slowly.
For instance, it sums approximately to 2.929 when |i/| = 10, to 5.187 when |/| = 100,
to 7.485 when |U{| = 1,000, and to 14.393 when |I/| = 1,000,000. As a matter of
fact, the harmonic series1 +1/2 + --- + 1/|U/| is bounded by 1 + fllul 1/x dx, which
yields the bound log, [/| + 1. Furthermore, this factor is only a worst-case analysis,
and the real approximation ratio could be even better.

Linear programming is a general formulation of problems involving maximizing or
minimizing a linear objective function subject to certain linear constraints. The fol-
lowing is a simple example.

Minimize X1 + Xo
Subject to x; + 2%, > 2,
3X1 + X2 > 3,

Here the linear objective function is x; + X, and there are four linear constraints
X1+ 2X2 > 2, 3X1 + X2 > 3, X3 >0, and x, > 0. By graphing the constraints on
the plane, we observe that the objective function x; + x» (lines with slope —1, see

2 Pattern identification in a haplotype block

X2

X1

X1+ X2 =0

Figure 2.7 A feasible region defined by the four linear constraints x; + 2x; > 2,
3X1+Xx2 >3, x>0, andxz > 0.

Figure 2.7) is minimized when x; = 4/5 and x, = 3/5, a corner point where the line
X1 + 2X, = 2 and the line 3x; + X, = 3 intersect.

If we impose the extra constraints that the values of the variables are integers, then
the problem is called integer linear programming or simply integer programming. In
the above example, if both x; and x, are required to be integers, the problem becomes
an integer-programming problem.

Now we show how to formulate the tag SNP selection problem as an integer-
programming problem. Recall that we are given a haplotype block containing n SNPs
and h haplotype patterns. Let us assign a variable x; for each SNP S; € S. Variable
Xi is set to be 1 if SNP §; is selected and set to be 0 otherwise. Define D(Pj, Py) as
the set of SNPs which can distinguish between patterns P; and P, 1 < j <k <h.
Each pair of patterns must be distinguished by at least one SNP. Therefore, for each set
D(P;j, Py), at least one SNP has to be selected to distinguish between patterns P; and
P«. The following integer program formulates the tag SNP selection problem whose
objective is to minimize the number of selected SNPs.

n
Minimize in
i=1
Subjectto)" xi>1, foralll<j<k<h,
SieD(Pj,Px)
Xi=0or1, foralll <i <n.
In Figure 2.1, the pair P, and P, can be distinguished by SNPs S;, S;, and Sg.

Thus, we have D(Py, P,) = {S1, S;, S4}, which yields the constraint x; + X, + X4 > 1.
Similarly, D(P1, Ps)={Si, Sz, S5}, D(P1, P4)={Ss, Sa}, D(P2, P3)={S3, S3, S4, Ss},

31

32 Partl Genomes

D(Py, P4) = {S1, Sz, S3}, and D(Ps, P4) = {S1, S4, Ss}. By examining all possible
pairs of haplotype patterns, we obtain the following integer program for Figure 2.1.

Minimize X; + Xo + X3 + X4 + X5
Subject to X3 + X2 + X4 > 1,
Xy + X3+ X5 > 1,
X3+ X4 > 1,
X2+ X3+ Xa + X5 > 1,
X1+ Xo + X3 > 1,
X1+ X4+ X5 > 1,

le X27 X33 X41 X5 == 0 or 1

In the above integer program, if we set x; and x4 to be 1 and the rest of the x;’s to
be 0, then all constraints are satisfied. Consequently, the set of SNPs S; and S, can
distinguish all pairs of haplotype patterns and its size is minimized. However, if we set
X1, X2, and Xs to be 1 and set X3 and X4 to be 0, then the third constraint X3 + X4 > 1
(for distinguishing P; and P,) is not satisfied. This implies that SNPs S;, S;, and Ss
do not form a set of tag SNPs since patterns P; and P, cannot be distinguished.

All variables x;s are required to be 0 or 1. Such an integral constraint makes the
problem much harder to solve. In fact, both integer programming and 0-1 integer
programming have been shown to be NP-hard as has the set-covering problem. It
should be noted, however, that without the integral constraint, this integer program
becomes a linear program in which variables can be fractional numbers, and fast
algorithms, such as the simplex algorithm by George Dantzig, are available for solving
it. A general strategy for solving the 0-1 integer-programming problems is thus to
replace the integral constraint that each variable must be 0 or 1 by a weaker constraint
that each variable be a number in the interval [0,1]. This process is referred to as a
linear-programming relaxation. After the relaxation, the solution to the relaxed linear
program may assign fractional values to the variables. For the above integer program,
if we set X1, X3, and X4 to be 0.5 and set x, and x5 to be 0, all the constraints can be
satisfied except the last integral constraint. Several techniques, such as randomized
rounding, can cope with the linear-programming relaxation to derive heuristic integral
solutions for the original unrelaxed integer program. A widely used idea for rounding
a fractional solution is to use their fractions as probabilities for rounding. The heuristic
solutions may not be optimal, but often their quality can be assured by a logarithmic
approximation ratio.

@)

2 Pattern identification in a haplotype block 33

DISCUSSION

In this chapter, we reformulate the tag SNP selection problem as two well-known
optimization problems in computer science — the set-covering problem and the
integer-programming problem. Both problems are hard to solve, yet efficient
approximation algorithms can be used to find their near-optimal solutions.

In reality, some tag SNPs may be missing, and we may fail to distinguish two
haplotype patterns due to the ambiguity caused by missing data. To conquer this,
either we genotype a larger set of tag SNPs for tolerating missing data, or
re-genotype some auxiliary tag SNPs to resolve the ambiguity on the fly. We can
handle these extensions by modifying the formulations.

It should be noted that selecting tag SNPs within a haplotype block is only one
of the models for selecting tag SNPs. An alternative is to identify a minimum set
of bins, each of which contains highly correlated SNPs. Such an approach
identifies a minimum set of tag SNPs that can represent all other SNPs which
might be far apart, whereas the block-based methods considered in this chapter
are mainly focused on representing all other SNPs in a short contiguous region.
Furthermore, some methods may assume that the number of tag SNPs is specified
as an input parameter and identify tag SNPs which can reconstruct the haplotype
of an unknown sample with high accuracy.

QUESTIONS

lett/ =1{1,2,3,4,5,6,7,8,9}and C = {Cy, C,, C3, C4, Cs}, where
Ci1=1{2,3,4,5,6,7),C, ={1,2,3,4},C3 = {6,7,8,9}, Cq = {1, 3,5, 7, 9}, and
Cs = {2, 4, 6, 8. Find a minimum-size subcollection of C that covers every element of /.
Suppose that a set of skills is needed to accomplish a given task, and we have a list of
people, each with their own skills. Our objective is to form a task force with as few people
as possible such that for each requisite skill, we can always find someone in the task force
having that skill. Formulate this problem as a set-covering problem.

Solve the following linear program.

Minimize x; + Xx»
Subject to x; + 2x; > 4,
3X1 + X2 > 6,

34 Part!l Genomes

BIBLIOGRAPHIC NOTES AND FURTHER READING

This chapter presents two algorithmic approaches for solving the tag SNP
selection problem. Readers can refer to algorithm textbooks for more algorithmic
details. For instance, the algorithm book (or “The White Book") by Cormen

et al. [1] is a comprehensive reference of data structures and algorithms with a
solid mathematical and theoretical foundation. The minimum test collection
problem was shown to be NP-hard via a reduction from the three-dimensional
matching problem by Garey and Johnson [2].

An early review paper by Brookes [3] provides a good orientation for readers
who are not familiar with SNPs. Millions of SNPs have been identified, and these
data are now publicly available [4-6]. The Phase Il HapMap has characterized over
3.1 million human SNPs genotyped in 270 individuals from 4 geographically
diverse populations [5]. The dbSNP database is a public-domain archive for a
broad collection of SNPs [6].

In a large-scale study of human Chromosome 21, Patil et al. [7] developed a
greedy algorithm to partition the haplotypes into 4,135 blocks with 4,563 tag
SNPs. It was later refined by Zhang et al. [8, 9] and Chang et al. [10].

: g REFERENCES

[1] T.H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, 3rd edn.
The MIT Press, Cambridge, MA, 2009.

[2] M.R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. W. H. Freeman and Co., New York, 1979.

[3] A.J. Brookes. The essence of SNPs. Gene, 234:177-186, 1999.

[4] D. A. Hinds, L. L. Stuve, G. B. Nilsen, E. Halperin, E. Eskin, D. G. Ballinger, K. A. Frazer, and
D. R. Cox. Whole-genome patterns of common DNA variation in three human populations.
Science, 307:1072—-1079, 2005.

[5] The International HapMap Consortium. A second generation human haplotype map of
over 3.1 million SNPs. Nature, 449:851-861, 2007.

[6] S.T. Sherry, M. H. Ward, M. Kholodov, J. Baker, L. Phan, E. M. Smigielski, and K. Sirotkin.
dbSNP: The NCBI database of genetic variation. Nucl. Acids Res., 29: 308-311, 2001.

[7]1 N. Patil, A. J. Berno, D. A. Hinds, W. A. Barrett, J. M. Doshi, C. R. Hacker, C. R. Kautzer,

D. H. Lee, C. Marjoribanks, D. P. McDonough, B. T. Nguyen, M. C. Norris, J. B. Sheehan,
N. Shen, D. Stern, R. P. Stokowski, D. J. Thomas, M. O. Trulson, K. R. Vyas, K. A. Frazer,
S. P. Fodor, and D. R. Cox. Blocks of limited haplotype diversity revealed by high-
resolution scanning of human chromosome 21. Science, 294:1719-1723, 2001.

2 Pattern identification in a haplotype block

[8] K.Zhang, F. Sun, M. S. Waterman, and T. Chen. Haplotype block partition with limited
resources and applications to human chromosome 21 haplotype data. Am. J. Hum. Genet.,
73:63-73, 2003.

[9] K.Zhang, Z.S. Qin, J. S. Liu, T. Chen, M. S. Waterman, and F. Sun. Haplotype block
partition and tag SNP selection using genotype data and their applications to association
studies. Genome Res., 14:908-916, 2004.

[10] C.-J. Chang, Y.-T. Huang, and K.-M. Chao. A greedier approach for finding tag SNPs.
Bioinformatics, 22:685-691, 2006.

35

Genome reconstruction: a
puzzle with a billion pieces

Phillip E. C. Compeau and Pavel A. Pevzner

While we can read a book one letter at a time, biologists still lack the ability to read a DNA
sequence one nucleotide at a time. Instead, they can identify short fragments (approximately
100 nucleotides long) called reads; however, they do not know where these reads are located
within the genome. Thus, assembling a genome from reads is like putting together a giant
puzzle with a billion pieces, a formidable mathematical problem. We introduce some of the
fascinating history underlying both the mathematical and the biological sides of DNA
sequencing.

Imagine that every copy of a newspaper has been stacked inside a wooden chest.
Now imagine that chest being detonated. We will ask you to further suspend your
disbelief and assume that the newspapers are not all incinerated, as would assuredly
happen in real life, but rather that they explode cartoonishly into tiny pieces of confetti
(Figure 3.1). We will concern ourselves only with the immediate journalistic problem
at hand: what did the newspaper say?

This “newspaper problem” becomes intellectually stimulating when we realize that
it does not simply reduce to gluing the remnants of newspaper as we would fit together
the disjoint pieces of a jigsaw puzzle. One reason why this is the case is that we

Bioinformatics for Biologists, ed. P. Pevzner and R. Shamir. Published by Cambridge University Press.
© Cambridge University Press 2011.

36

3 Genome reconstruction: a puzzle with a billion pieces

stack of NY Times, stack of NY Times, June 27,
June 27, 2000 2000 on a pile of dynamite

Al
Vntrpie|

-

-

K

\CF/\ = ‘_“-L-_;»i)"i-:-h,
S5O0 |
zz-

0 RO
C = - Lq”:: so, what did the June 27, 2000
M"‘ : ST = NY Times say?

F‘ o roU J 5___.

Figure 3.1 The exploding newspapers.

have probably lost some information from each copy (the content that was blown
to smithereens). However, we can also see that because the chest contained many
identical copies of the same newspaper, different shreds of paper may overlap and
therefore contain some of the same information. The newspaper problem therefore
induces what we will call an overlap puzzle.

We reiterate that our analogy of exploding newspapers is far-fetched, but the newspa-
per problem nevertheless captures the essence of fragment assembly in DNA sequenc-
ing. The technology for “reading” an entire genome nucleotide by nucleotide, like read-
ing a newspaper one letter at a time, remains unknown. At the same time, researchers
can indirectly interpret short sequences of DNA, which are referred to as reads; the
most popular modern technology produces reads that are only 100 nucleotides long
(Figure 3.2). The idea behind DNA sequencing, then, is to generate many reads from
multiple copies of the same genome, which results in a giant overlap puzzle. For
instance, a three billion-nucleotide mammalian genome requires an overlap puzzle
with a billion (overlapping) pieces, the largest such puzzle ever assembled.

The problem of genome sequencing therefore reduces to read generation (a bio-
logical problem) and fragment assembly (an algorithmic problem). Read generation

37

38 Partl Genomes

Multiple Genome Copies

Reads

Figure 3.2 In DNA sequencing, multiple (typically more than a billion) copies of a genome are
broken in random locations to generate much shorter reads.

has its own long and tangled history that dates to the 1970s, when Walter Gilbert and
Fred Sanger won the Nobel Prize for inventing the first read generation technology.
In the early 1990s, modern DNA sequencing machines hit the market and the era of
high-throughput DNA sequencing began. In 2000, a few hundred such machines work-
ing around the clock for over a year eventually generated enough reads to enable the
fragment assembly of the human genome, which was completed within a few months
by some of the world’s most powerful supercomputers.

Although we shall discuss read generation in some detail at the end of the chapter,
our primary target is the computational problem of fragment assembly, or using the
generated reads to infer the original genome.

We begin by noting that although we have seen that both the newspaper problem
and fragment assembly reduce to solving an overlap puzzle, fragment assembly is
substantially more difficult for several reasons, and not simply because of the sheer
scale of reconstructing a genome from a billion reads. First, keep in mind that a
newspaper is written in some understood language, whose rules will provide us with
context clues as to how different shreds of paper may or may not be connected,
regardless of whether these shreds overlap (see Figure 3.3a). Yet the rules for the
“language” of DNA still mostly elude biologists, and so it is practically impossible to
determine how two non-overlapping reads might be connected.

A second complication of fragment assembly is that the underlying nucleotide
“alphabet” for DNA contains only four letters: A, T, G, and C. Working with a small

3 Genome reconstruction: a puzzle with a billion pieces 39

(@) wodie |, appr . 2" 1
<e have not yet named any suspects, alt
e murder occurred at approximately 5:2 -a