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PREFACE

What is this book?

This book aims to convey the fundamentals of bioinformatics to life science students

and researchers. It aims to communicate the computational ideas behind key methods

in bioinformatics to readers without formal college-level computational education. It

is not a “recipe book”: it focuses on the computational ideas and avoids technical

explanation on running bioinformatics programs or searching databases. Our expe-

rience and strong belief are that once the computational ideas are grasped, students

will be able to use existing bioinformatics tools more effectively, and can utilize their

understanding to advance their research goals by envisioning new computational goals

and communicating better with computational scientists.

The book consists of self-contained chapters each introducing a basic compu-

tational method in bioinformatics along with the biological problems the method

aims to solve. Review questions follow each chapter. An accompanying website

(www.cambridge.org/b4b) containing teaching materials, presentations, questions, and

updates will be of help to students as well as educators.

Who is the audience for the book?

The book is aimed at life science undergraduates; it does not assume that the reader has a

background in mathematics and computer science, but rather introduces mathematical

concepts as they are needed. The book is also appropriate for graduate students and

researchers in life science and for medical students. Each chapter can be studied

individually and used individually in class or for independent reading.

xv
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Why this book?

In 1998, Stanford professor Michael Levitt reflected that computing has changed

biology forever, even if most biologists did not know it yet. More than a decade

later, many biologists have realized that computational biology is as essential for

this century’s biology as molecular biology was in the last century. Bioinformatics1

has become an essential part of modern biology: biological research would slow down

dramatically if one suddenly withdrew the modern bioinformatics tools such as BLAST

from the arsenal of biologists. We cannot imagine forward-looking biological research

that does not use any of the vast resources that bioinformatics researchers have made

available to the biomedical community.

Bioinformatics resources come in two flavors: databases and algorithms. Thousands

of databases contain information about protein sequences and structures, gene anno-

tations, evolution, drugs, expression profiles, whole genomes and many more kinds of

biological data. Numerous algorithms have been developed to analyze biological data,

and software implementations of many of these algorithms are available to biologists.

Using these resources effectively requires a basic understanding of what bioinformat-

ics is and what it can do: what tools are available, how best to use them and to interpret

their results, and more importantly, what one can reasonably hope to achieve using

bioinformatics even if the relevant tools are not yet available.

Despite this richness of bioinformatics resources and methods, and although sophis-

ticated biomedical researchers draw on these resources extensively, the exposure of

undergraduates in biology and biochemistry, as well as of medical students, to bioin-

formatics is still in its infancy. The computational education of biologists has hardly

changed in the last 50 years. Most universities still do not offer bioinformatics courses

to life sciences undergraduates, and those that do offer such courses struggle with the

question of how and what to teach to students with limited computational culture. In

the absence of any preparation in computer science, the generation of biologists that

went to universities in the last decade remains poorly prepared for the computational

aspects of work in their own discipline in the decades to come. Similarly, medical

doctors (who will soon have to analyze personal genomes or blood tests that report

thousands of protein levels) are not prepared to meet the computational challenges of

future medicine.

Biomedical students typically have a very basic computational background, which

leads to a serious risk that bioinformatics courses – when offered – will become

technical and uninspired. The software tools are often taught and then used as “black

1 Here and throughout the book, we use the terms bioinformatics and computational biology interchangeably.
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boxes,” without deeper understanding of the algorithmic ideas behind them. This can

lead to under-utilization or over-interpretation of the results that such black-box use

produces. Moreover, the students who study bioinformatics at this level will have a

much smaller chance of coming up with computational ideas later in their careers when

they carry out their own biomedical research. It is therefore essential, in our opinion,

that biologists be exposed to deep algorithmic ideas, both in order to make better use

of available tools that rely on these ideas, and in order to be able to develop novel

computational ideas of their own and communicate effectively with computational

biologists later in their careers.

We and others have argued for a revolution in computational education of biologists2

and noted that the mathematical and computational education of other disciplines have

already undergone such revolutions with great success. Physicists went through a

computational revolution 150 years ago, and economists have dramatically upgraded

their computational curriculum in the last 20 years. As a result, paradoxically, the

students in these disciplines are much better prepared for the computational challenges

of modern biomedical research than are biology students. Moreover, whatever little

mathematical background biologists have, it is mainly limited to classical continuous

mathematics (such as Calculus) rather than discrete mathematics and computer science

(e.g. algorithms, machine learning, etc.) that dominate modern bioinformatics. In 2009

we thus came up with a radical prophecy3 that the education of biologists will soon

become as computationally sophisticated as the education of physicists and economists

today. As implausible as this scenario looked a few years ago, leading schools in

bioinformatics education (such as Harvey Mudd or Berkeley) are well on the way

towards this goal.

The time has come for biology education to catch up. Such change may require

revising the contents of basic mathematical courses for life science college students, and

perhaps updating the topics that are taught. Students’ understanding of bioinformatics

will benefit greatly from such a change. In parallel, dedicated bioinformatics classes

and courses should be established, and textbooks appropriate for them should be

developed.

Most undergraduate bioinformatics programs at leading universities involve a

grueling mixture of biological and computational courses that prepare students for

subsequent bioinformatics courses and research. As a result, some undergraduate

bioinformatics courses are too complex even for biology graduate students, let alone

2 W. Byalek and D. Botstein. Introductory science and mathematics education for 21st-Century biologists.
Science, 303:788–790, 2004.
P. A. Pevzner. Educating biologists in the 21st century: Bioinformatics scientists versus bioinformatics
technicians. Bioinformatics, 20:2159–2161, 2004.

3 P. A. Pevzner and R. Shamir. Computing has changed biology – Biology education must catch up. Science,
325:541–542, 2009.
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undergraduates. This causes a somewhat paradoxical situation on many campuses

today: bioinformatics courses are available, but they are aimed at bioinformatics under-

graduates and are not suitable for biology students (undergraduate or graduate). This

leads to the following challenge that, to the best of our knowledge, has not yet been

resolved:

Pedagogical Challenge. Design a bioinformatics course that (i) assumes minimal computa-
tional prerequisites, (ii) assumes no knowledge of programming, and (iii) instills in the students
a meaningful understanding of computational ideas and ensures that they are able to apply
them.

This challenge has yet to be answered, but we claim that many ideas in bioinformat-

ics can be explained at an intuitive level that is often difficult to achieve in other

computational fields. For example, it is difficult to explain the mathematics behind

the Ising model of ferromagnetism to a student with limited computational culture,

but it is quite possible to introduce the same student to the algorithmic ideas (Euler

theorem and de Bruijn graphs) behind the genome assembly. Thus, we argue that the

recreational mathematics approach (so brilliantly developed by Martin Gardner and

others) coupled with biological insights is a viable paradigm for introducing biologists

to bioinformatics. This book is an initial step in that direction.

What is in the book?

Each chapter describes the biological motivation for a problem and then outlines a

computational approach to addressing the problem. Chapters can be read separately,

as each introduces any needed computational background beyond basic college-level

knowledge.

The range of biological topics addressed is quite broad: it includes evolution,

genomes, regulatory networks, phylogeny, and more. The computational techniques

used are also diverse, from probability and graphs, combinatorics and statistics to

algorithms and complexity. However, we made an effort to keep the material accessi-

ble and avoid complex computational details (those can be filled in by the interested

reader using the references). Figure 1 aims to show for each chapter the biological

topics it touches upon and the computational areas involved in the analysis. Naturally,

many chapters involve multiple biological and computational areas. Not surprisingly,

evolution plays a role in almost all the topics covered, following the famous quote

from Theodosius Dobzhansky, “Nothing in biology makes sense except in the light of

evolution.”
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Figure 1 The connections between biological and computational topics for each chapter. The
nodes in the middle are chapters, and edges connect each chapter to the biological topics it
covers (right) and to the computational topics it introduces (left).

The pedagogical approach, the style, the length, and the depth of the introduced

mathematical concepts vary greatly from chapter to chapter. Moreover, even the nota-

tion and computational framework describing the same mathematical concepts (e.g.

graph theory) across different chapters may vary. As computer scientists say, this is not

a bug but a feature: we provided the contributors with complete freedom in selecting

the approach that fits their pedagogical goal the best. Indeed, there is no consensus yet

on how to introduce computer science to biologists, and we feel it is important to see

how leading bioinformaticians address the same pedagogical challenge.

How will this book develop?

“Bioinformatics for Biologists” is an evolving book project: we welcome all educators

to contribute to future editions of the book. We envision introduction of computational

culture to the biological education as an ever-expanding and self-organizing process:

starting from the second edition, we will work towards unifying the notation and the

pedagogical framework based on the students’ and instructors’ feedback. Meanwhile,
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the educators have an option of selecting the specific self-contained chapters they like

for the courses they teach.

How to use this book?

Since chapters are self-contained, each chapter can be studied or taught individually and

chapters can be followed in any order. One can select to cover, for example, a sample

of topics from each of the five biological themes in order to obtain a broader view,

or cover completely one of the themes for a deeper concentration. Review questions

that follow each chapter are helpful to assimilate the material. Additional resources

available at the website will be helpful to teachers in preparing their lectures and to

students in deeper and broader learning.

The book’s website

The book is accompanied by the website www.cambridge.org/b4b containing teaching

materials, presentations, and other updates. These can be of help to students as well as

educators.

Contributors

The scientists who contributed to this book are leading computational biologists who

have ample experience in both research and education. Some are biologists who have

became computational over the years, as their computational research needs developed.

Others have formal computational background and have made the transition into

biology as their research interests and the field developed. All have experienced the

need and the difficulty in conveying computational ideas to biology students, and all

view this as an important problem that justifies the effort of contributing to this book.

They are all committed to the project.
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A COMPUTATIONAL MICRO PRIMER

This introduction is a brief primer on some basic computational concepts that are used
throughout the book. The goal is to provide some initial intuition rather than formal
definitions. The reader is referred to excellent basic books on algorithms which cover these
notions in much greater rigor and depth.

Algorithm

An algorithm is a recipe for carrying out a computational task. For example, every

child learns in elementary school how to perform long addition of two natural

numbers: “add the right-most digits of the two numbers and write down the sum as

the right-most digit of the result. But if the sum is 10 or more, write only the

right-most digit and add the leading digit to the sum of the next two digits to the left,

etc.” We have all learned similar simple procedures for long subtraction,

multiplication and division of two numbers. These are all actually simple algorithms.

Like any algorithm, each is a procedure that works on inputs (two numbers for the

problems above) and produces an output (the result). The same procedure will work

on any input, no matter how long it is. While we can carry out simple algorithms on

small inputs by hand, computers are needed for more complex algorithms or for

longer inputs. As with long addition, a complex task is broken down into simple steps

that can be repeated many times, as needed. Algorithms are often displayed for

human readers in a short form that summarizes their salient features. One aspect of

this simplified representation is that a repeated sequence of steps may be listed

only once.
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Computational complexity

A basic question in studying algorithms is how efficient they are. For a given input,

one can time the computation. Since the time depends on the computer being used, a

better understanding of the algorithm can be gained by counting the operations

(addition, multiplication, comparison, etc.) performed. This number will be different

for different inputs. A common way to evaluate the efficiency of a method is by

considering the number of operations required as a function of the input length. For

example, if an algorithm requires 15n2 operations on an input of length n, then we

know how many operations will be needed for any input. If we know how many

operations our computer performs per second, we can translate this to the running

time on our machine.

O notation

Suppose our algorithm requires 15n2 + 20n + 7 operations on an n-long input. As n

grows larger, the contribution of the lower-order terms 20n + 7 will become tiny

compared to the 15n2. In fact, as n grows larger, the constant 15 is not very important

when it comes to the rate of growth of the number of operations (although it affects

the run time).1 Computer scientists prefer to focus only on the main trend and

therefore say that an algorithm that takes 15n2 + 20n + 7 operations requires “O(n2)”

time (pronounced “oh of n squared”), or, equivalently, is “an O(n2) algorithm.” This

means that the algorithm’s running time increases quadratically with the input length.2

Polynomial and exponential complexity

Some problems can be solved using any of several algorithms, and the O notation is

used to decide which algorithm is better (i.e. faster). So an O(n) algorithm is better

than an O(n2) algorithm, which in turn is better than an O(2n) algorithm. This latter

complexity, which is called exponential (since n appears in the exponent), is

1 Computer scientists do not worry too much about the difference between n2 and 100n2, but they greatly worry
about the difference between n3 and 100n2. They will typically prefer 100n2 to n3, since for all inputs of
length >100 the latter will require more time.

2 To be precise, “O(n2)” means that the algorithm’s run time grows not more than quadratically. To specify that
the run time is exactly quadratic, complexity theory uses the notation “�(n2).” We shall ignore these
differences here.
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particularly nasty: as the problem size changes from n to n + 1, the run time will

double! In contrast, for an O(n) algorithm the run time will grow by O(1), and for an

O(n2) algorithm it will grow by O(2n + 1). So no matter how fast our computer is,

with an algorithm of exponential complexity we shall very quickly run out of

computing time as the problem grows: if the problem size grows from 30 to 40, the

run time will grow 1024-fold! The main distinction is therefore between polynomial

algorithms, i.e. those with complexity O(nc) for some constant c, and exponential

ones.

NP-completeness

Computer scientists often try to develop the most efficient algorithm possible for a

particular problem. A primary challenge is to find a polynomial algorithm. Many

problems do have such algorithms, and then we worry about making the exponent c

in O(nc) as small as possible. For many other problems, however, we do not know of

any polynomial algorithm. What can we do when we tackle such a problem in our

research? Computer scientists have identified over the years thousands of problems

that are not known to be polynomial, and in spite of decades of research currently

have only exponential algorithms. On the other hand, so far we do not know how to

prove mathematically that they cannot have a polynomial algorithm. However, we

know that if any single problem in this set of thousands of problems has a polynomial

algorithm, then all of them will have one. So in a sense all these problems are

equivalent. We call such problems NP-complete. Hence, showing that your problem is

NP-complete is a very strong indication that it is hard, and unlikely to have an

algorithm that will solve it exactly in polynomial time for every possible input.3

Tackling hard problems

So what can one do if the problem is hard? If a problem is NP-complete this means

that (as far as we know) it has no algorithm that will solve every instance of the

problem exactly in polynomial time. One possible solution is to develop

approximation algorithms, i.e. algorithms that are polynomial and can approximately

solve the problem, by providing (provably) near-optimal but not necessarily always

optimal solutions. Another possibility is probabilistic algorithms, which solve the

3 Note that there are problems that were proven not to have any polynomial time algorithms, but they are outside
the set of established NP-complete problems.
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problem in polynomial average time while the worst-case run time can still be

exponential. (This would require some assumptions on the probability distribution of

the inputs.) Yet another alternative that is often used in bioinformatics is heuristics –

fast algorithms that aim to provide good solutions in practice, without guaranteeing

the optimality or the near-optimality of the solution. Heuristics are typically

evaluated on the basis of their performance on the real-life problems they were

developed for, without a theoretically proven guarantee for their quality. Finally,

exhaustive algorithms that essentially try all possible solutions can be developed, and

they are often accompanied by a variety of time-saving computational shortcuts.

These algorithms typically require exponential time and thus are only practical for

modest-sized inputs.
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GENOMES





CHAPTER ONE

Identifying the genetic basis
of disease

Vineet Bafna

It is all in the DNA. Our genetic code, or genotype, influences much about us. Not only are
physical attributes (appearance, height, weight, eye color, hair color, etc.) all fair game for
genetics, but also possibly more important things such as our susceptibility to diseases,
response to a certain drug, and so on. We refer to these “observable physico-chemical traits”
as phenotypes. Note that “to influence” is not the same as “to determine” – other factors
such as the environment one grows up in can play a role. The exact contribution of the
genotype in determining a specific phenotype is a subject of much research. The best we can
do today is to measure correlations between the two. Even this simpler problem has many
challenges. But we are jumping ahead of ourselves. Let us review some biology.

1 Background

Why do we focus on DNA? Recall that our bodies have organs, each with a specific

set of functions. The organs in turn are made up of tissues. Tissues are clusters

of cells of a similar type that perform similar functions. Thus, it is useful to work

with cells because they are simpler than organisms, yet encode enough complexity

to function autonomously. Thus, we can extract cells into a Petri dish, and they can

grow, divide, communicate, and so on. Indeed, the individual starts life as a single

cell, and grows up to full complexity, while inheriting many of its parents’ phenotypes.

Bioinformatics for Biologists, ed. P. Pevzner and R. Shamir. Published by Cambridge University Press.
C© Cambridge University Press 2011.
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There must be molecules that contain the instructions for making the body, and these

molecules must be inherited from the parents. The cells have smaller subunits (nucleus,

cytoplasm, and other organelles) which contain an abundance of three molecules: DNA,

RNA, and proteins. Naturally, these molecules were prime candidates for being the

inherited material. Of these, proteins and RNA were known to be the machines in the

cellular factories, each performing essential functions of the cell, such as metabolism,

reproduction, and signal transduction.

This leaves DNA. The discovery of DNA as the inherited material, followed by

an understanding of its structure and the mechanism of inheritance, form the major

discoveries of the latter half of the twentieth century. DNA consists of long chains

of four nucleotides, which we abbreviate as A, C, G, T . Portions of the nucleotides

(genes) contain the code for manufacturing specific proteins, as well as the regulatory

mechanisms that interpret environmental signals, and switch the production on or

off. Interestingly, we have two copies of DNA, one from each of our parents. In this

way, we produce a similar set of proteins as our parents, and therefore display similar

phenotypes, including susceptibility to some diseases. Of course, as we inherit only a

randomly sampled half of the DNA from each parent, we are similar but not identical

to them, or to our siblings.

On the other hand, if all DNA were identical, it would not matter where we inherited

the DNA from. In fact, DNA mutates away from its parent. Often, these mutations are

small changes (insertions, substitutions, and deletions of single nucleotides). There are

also many additional forms of variation, which are more complex, and include many

large-scale changes that are only now being understood. In this chapter, however, we

will focus on small mutations as the only source of variation. If we sample DNA

from many individuals at a single location (a locus) we often find that it is polymorphic

(contains multiple nucleotide variants). Clearly, if these mutations occur in a gene, then

the protein encoded by the DNAcan also change, possibly changing some functional

trait in the organism. Therefore, different variants at a locus sometimes present different

phenotypes, and are often referred to as alleles, after Mendel. Loci with multiple alleles

are variously called “segregating sites” (they separate the population), “variants”, or

“polymorphic markers.” If these variants affect single nucleotides, they are also called

single nucleotide polymorphisms or SNPs.

We start with a basic instance of a Mendelian mutation: individuals present a

phenotype if and only if they carry the specific mutation. Our goal is to identify

the mutation (or the corresponding genomic locus) from the set. Figure 1.1a shows

this with three candidate variants represented by �, �, and ◦. A simple approach to

identifying the causal mutation is as follows: (i) determine the genotypes of a collection

of individuals that present the phenotype (cases), and those that do not (controls);

(ii) align the genotypes of all individuals, and identify polymorphic locations; (c) for
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Case

Control

The  SCKO gene

(a) (b)

Figure 1.1 Genetic association basics. (a) A Mendelian mutation � that is causal for a
phenotype. Other “neutral” variants are nearby. (b) Popular news highlighting the discovery
of the gene responsible for a phenotype. In many cases, all that is observed is a correlation
between a mutation and the phenotype. The causality is assumed based on some knowledge
of the function of the protein encoded by the gene. Figure reprinted by permission.
c© Telegraph Media Group Limited 2011.

each polymorphic location, check for a correlation of the variants with case/control

status. In Figure 1.1, we see that the occurrence of the � correlates highly with the

case status and conclude that the mutation is causal. Given that the mutation lies in

the SCKO gene, we conclude that SCKO is responsible. The popular media is peppered

with accounts of discoveries of genes responsible for a phenotype.

The intelligent reader will immediately question this premise because these “discov-

eries” are often not the final confirmation, but simply an observed correlation between

the occurrence of the mutation and the phenotype. First, what is the chance that we

are even testing with the causal mutation? Typically, genotypes are determined using

the technology of DNA chips. The individual DNA is extracted (often from saliva or

serum) and washed over the chip. The chip allows us to sample, in parallel, close to

0.5–1 M polymorphic locations, and determine the allelic values at these locations.

This fast and inexpensive test allows us to investigate a large population of cases and

controls, and makes genetic association possible. However, we do not test each location

(there are three billion). It is very possible that the causal mutation is not even sampled,

and that we may not find correlations even when they exist. Second, even if we do find
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a correlation, there is no guarantee that we have found the right one. Surely, a simple

correlation at one of 1 M markers could have arisen just by chance. How can that be a

clue towards the causal gene?

The answer might surprise some. Nature helps us in two ways: first, it establishes a

correlation between SNPs that are close to the causal mutation, so any of the SNPs in

the region (that contains the relevant gene) are correlated with the mutation. Second, it

“destroys” the correlation as the distance from the causal mutation increases. Therefore,

a correlation is indeed a strong suggestion that we are in the right location, and any

gene in that region is worth a closer look. The next section is devoted to an explanation

of the underlying genetic principles, and is followed by a description of the statistical

tests used to quantify the extent of the correlation.

Of course, while the basic premise is correct, and simply stated, it is (like everything

else in biology) simplistic. In the following sections, we look at issues that can confound

the statistical tests for association, and how they are resolved. The resolution of these

problems requires a mix of ideas from genetics, statistics, and algorithms.

2 Genetic variation: mutation, recombination, and
coalescence

Dobzhansky famously said that “nothing in biology makes sense except in the light

of evolution,” and that is where we will start. You might recall from your high-school

biology that each of us has two copies of each chromosome, each inherited from one

parent.1 Having two parents makes it tricky to study the ancestral history (the geneal-

ogy) of an individual. Therefore, we work with a population of chromosomes, where

every individual does have a single parent. In this abstraction, the individual is simply

“packaging” for the chromosomes, two at a time. We also make the assumption (absurd,

but useful) that all individuals reproduce at the same time. Finally, we assume that the

population size does not change from generation to generation. Figure 1.2a shows the

basic process. Time is measured in reproductive generations. In each generation, an

individual chromosome is created by “choosing” a single parent from the previous

generation. To see how this helps, go back in time, starting with the extant popula-

tion. Every time two chromosomes choose the same parent (coalesce), the number of

ancestral chromosomes reduces by 1, and never increases again. Once this ancestry

reduces to a single chromosome (the most recent common ancestor, or MRCA), we

can stop because the history prior to that event has been lost forever. As each individ-

ual has a single parent, the entire history from the MRCA to the extant generation is

1 Not quite, but we will consider recombinations in a bit.
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(d) Causal and correlated mutations 

(a) Genealogy of a chromosomal population 

Current (extant) population Time

(c) Removing extinct genealogies 

(b) Mutations: drift, fixation, and elimination 

Figure 1.2 An evolving population of chromosomes. (a) The Wright Fisher model is an
idealized model of an evolving population where the number of individuals stays fixed from
generation to generation, and each child chooses a single parent uniformly from the previous
generation. (b) Mutations are inherited by all descendants, and drift until they are fixed or
eliminated. (c) We only consider the history that connects the existing population to its most
recent common ancestor. (d) The underlying data are presented as a SNP matrix (with a hidden
genealogy). The genealogy leads to correlations between SNPs.

described by a tree (the coalescent tree). Other genealogical events that occurred after

MRCA but are not part of the coalescent tree are useless because the lineages died out

before reaching the current generation (Figure 1.2c). The only historical events that

will concern us are ones in the underlying coalescent tree.
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Now, let us consider mutations. Each chromosome is identical to its parent, except

when a mutation modifies a specific location. Given the short time frame of evolution of

the human population relative to the number of mutating positions, most locations are

modified at most once in history. To simplify things, we assume that this is true for all

variants (the infinite sites assumption): once a location mutates to a new allelic value,

it maintains that allele, and all descendants of the chromosome inherit the mutation.

As individuals choose their parents and inherit mutations, the frequency of mutations

changes (drifts) from generation to generation. This principle is illustrated in Fig-

ure 1.2b. The mutation denoted by the blue ◦ arises before the MRCA, and is therefore

fixed in the current population. On the other hand, � arises in a lineage that was elim-

inated and is not observed. Other mutations, such as the �, arose sometime after the

MRCA, and present as polymorphisms when sampled in the existing population. This

is illustrated in Figure 1.2d. Here, we have removed the generation information, and

represent time simply by the branch-lengths. When we sample a population with DNA

microchips, we create a matrix of polymorphisms; rows correspond to individuals,

columns represent polymorphic locations, and the entries represent allelic values rep-

resenting the consequence of historical mutations on the coalescent tree. The tree itself

is invisible, although likely trees can be reconstructed using phylogenetic techniques.

What is the point of all this? It is simply that the underlying tree imposes a correlation

between mutations. Let the black circle • in Figure 1.2d represent a causal mutation.

Individuals display a phenotype if and only if they carry this mutation. However, every

mutation in this matrix is correlated to some extent. For example, the presence of the

yellow mutation (which is on the same branch) is equally predictive of the phenotype,

and the red � (which occurs on a different lineage) implies that the individual does not

carry the phenotype. We call this the principle of linkage: mutations that are part of an

evolutionary lineage are correlated. Thus, it is not necessary to sample all mutations to

identify the gene of interest. However, this is not enough. If all SNPs on the chromosome

are correlated (albeit to varying degree), they cannot help to narrow the search for

the causal locus. We are helped again by the natural phenomenon of recombination.

In meiosis (production of gametes), a crossing over of the two parental chromosomes

might occur. The child therefore gets a mix of the two parental chromosomes, as shown

schematically in Figure 1.3a,b. Now consider a population. Recombination events

between two locations change the underlying coalescent tree. With increasing distance

between loci, the number of historical recombination events increases and destroys the

correlations. In Figure 1.3c, the yellow and black ◦ are proximal and remain correlated.

However, recombination events destroy the correlations (the linkage) between the

red � and causal (black) •. This establishes a second principle: correlation between

mutations is destroyed with increasing distance between loci due to the accumulation

of recombination events.
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Synapsis: Pairing of
homologous chromosomes

MaternalPaternal

Crossing over

(a) (b)

(c)

Figure 1.3 Recombination events change genealogical relationships, and destroy correlation
between SNPs. (a) Crossover during meiosis. (b) Schematic of a crossover and its effect of
linkage between mutations. (c) Multiple recombination events destroy linkage between SNPs.

3 Statistical tests

Let us digress and consider a simple experiment to statistically test for correlation

between two events: thunder and lightning. It is intuitively clear that the two are

correlated, but we will formalize this. Let xi = 1 indicate the event that we saw lightning

on the i th day. Respectively, let yi = 1 indicate the event that we heard thunder on

the i th day. Let Px (respectively, Py) denote Pr(xi = 1) (respectively, Pr(yi = 1)) for

a randomly chosen day. Assume that we see lightning 35 days in a year, so that Px =
35/365 � 0.1. Likewise, let Py � 0.1. What is the chance of seeing both on the same

day? Formally, denote the chance of joint occurrence by Pxy = Pr(xi = 1 and yi = i).

If the two were not correlated, we would not observe both very often. In other words,
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Pxy = Px Py � 0.01, and so only 3–4 days a year are expected to present both events.

If we observe 30 days of thunder and lightning, then we can conclude that they are

correlated. What if we observe 10 days of thunder and lightning? This is the question

we will consider.

Denote two loci as x, y, and let xi denote the allelic value for the i th chromosome.

If we make the assumption of infinite sites, xi will take one of two possible allelic

values. Without loss of generality, let xi ∈ {0, 1}. The generalization to multi-allelic

loci will be considered in Section 4.2. Let Px denote Pr(xi = 1) for a randomly sampled

chromosome i at locus x . Correspondingly, Px̄ = 1 − Px represents the probability that

xi = 0. Denote the joint probabilities as

Pxy = Pr(xi = 1, yi = 1) = PxPr(yi = 1|xi = 1)

Px̄ y = Pr(xi = 0, yi = 1) = Px̄Pr(yi = 1|xi = 0)

and so on. If x, y are proximal then Pr(yi = 1|xi = 1) is very different from Py . See,

for example, the black and yellow ◦ in Figure 1.3c. By contrast, if x, y are very far

apart so that recombination events have destroyed any correlation, then

Pxy � Px Py

Px̄ y � Px̄ Py .

As the recombination events destroy correlation over time, we use the term Linkage

Equilibrium to denote the lack of correlation. The converse of this, often termed

Linkage Disequilibrium (LD), or association, describes the correlation between the

proximal loci. A straightforward statistic to measure LD(x, y) is given by

D = Pxy − Px Py . (1.1)

Note that the choice of allele does not matter. The interested reader can verify that

|D| = ∣∣Pxy − Px Py

∣∣
= ∣∣Px̄ y − Px̄ Py

∣∣
= ∣∣Px ȳ − Px Pȳ

∣∣
= ∣∣Px̄ ȳ − Px̄ Pȳ

∣∣.
The larger the value of |D|, the greater the correlation. Apart from its historical

significance, the D-statistic is used more as a relative, rather than an absolute measure.

Instead, a scaled statistic D′ is defined as

D′ = D

Dmax
=

⎧⎨
⎩

D
min{Px̄ Py ,Px Pȳ} D ≥ 0

D
− min{Px Py ,Px̄ Pȳ} D < 0

. (1.2)
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The normalized statistic, D′, ranges between 0 and 1, with 0 implying no correlation,

and 1 implying perfect correlation. Ultimately, these statistic values are still numbers,

however, and it might be hard to say how much better is D′ = 0.7 (say) than D = 0.6.

To address these questions, statisticians attempt to compute a p-value for the statistic.

The p-value of D = 0.6 is the probability that a random experiment would yield a

value of D ≥ 0.6 just by chance if the null hypothesis of D = was true.

To compute the p-value here, we have to use a different normalization for reasons

that will become clear. Define LD(x, y) as

ρ = D√
Px Px̄ Py Pȳ

. (1.3)

The statistic ρ is closely related to the χ2 test of independence between two variables.

Recall that with n chromosomes, the number of chromosomes i with xi = 1 and yi = 1

is given by Pxyn. The observations of joint occurrences for x, y can be expressed by

the 2 × 2 table:

x\y 0 1 Total

0 Px̄ ȳn Px̄ yn Px̄n

1 Px ȳn Pxyn Pxn

Total Pȳn Pyn n

If x, y are not correlated (null hypothesis), then the number of individuals in the first

cell is expected to be

Px̄ ȳn = Pȳ Px̄n

and so on, for all cells. The statistic (Pxyn − Px Pyn)/
√

Px Pyn behaves approximately

like a normal distribution, and the square (Pxyn − Px Pyn)2/Px Pyn behaves like a χ2

distribution. Under the null hypothesis, the mean value is 0, and the p-value can be

obtained simply by looking at pre-computed tables. Finally, we get a p-value for ρ2

observing that it is the sum of four χ2 distributed values, as follows:

χ2
xy = (Px̄ ȳn − Px̄ Pȳn)2

Px̄ Pȳn
+ (Px̄ yn − Px̄ Pyn)2

Px̄ Pyn
+ (Px ȳn − Px Pȳn)2

Px Pȳn
+ (Pxyn − Px Pyn)2

Px Pyn

= D2n

Px Py Px̄ Pȳ
= ρ2n. (1.4)

A low p-value implies that our assumption is incorrect, implying Linkage Disequilib-

rium or correlation. The actual inference (correlation, or not) based on probabilities

conforms to a “frequentist” interpretation of the data, and is not universally accepted.

Nevertheless, the reader will agree that it is a useful tool for interpretation.
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3.1 LD and statistical tests of association
Finally, we are ready to put it all together and identify the locus responsible for a

specific phenotype. Assume there is a phenotype with a single causal mutation at locus

d. For individual i , di = 1 implies case status; otherwise, the individual is control. Our

question can be reformulated as

Find the location of d .

OR,-

Find known polymorphisms that are located close to d, and are statistically associated.

OR,-

Find all polymorphisms x s.t. LD(x, d) is high.

However, we have already provided an answer to the last question above. The test

described here is but one of a battery of different statistical tests that can be performed.

How well a specific test works is calculated by taking a known set (perhaps simulated)

and measuring the accuracy of positive and negative results of the test. The test’s power

(1 – false negative rate) after fixing the type I error (false positive) rate can quantify

this.

4 Extensions

Let us extend the basic methodology. The actual mutation at d need not be considered,

and may not even exist in a Mendelian sense. To generalize, the allelic value di = 1

simply predisposes an individual towards the case status. Define the relative risk

RR = Pr(CASE|di = 1)

Pr(CASE|di = 0)
.

As long as RR 
 1, a similar test of association will work.

4.1 Continuous phenotypes
Recall that phenotype is any trait that can be measured. We assumed categorical values

for the phenotype (Case/Control). This is reasonable in some cases (occurrence or

non-occurrence of disease), but less applicable to others. For example, obesity (mea-

sured by the Body Mass Index), blood pressure (measured by the systolic or diastolic

blood pressure measurements), and height all represent phenotypes with continuous

values. Testing for association can be somewhat tricky in these circumstances. One

simple solution is the categorization of continuous values: for example, all diastolic
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Figure 1.4 Distribution of diastolic blood pressure segregated by the allelic value at locus x.
The estimated mean and variances of either class are (X̄ 0, S 2

0) = (103, 109), (X̄ 1, S 2
1) =

(62, 76) for n = 35 individuals in each class. The large difference between the means, and
the relatively low spread of each distribution, indicates that DBP is correlated with the allelic
value at the locus.

blood pressure values over 90 can be considered cases; else, controls. Another way to

approach this is through analysis of variance (ANOVA) tests, which we will explain

informally with an example. In this case, there are only two segregating classes, so a

specific ANOVA test, the Student’s t , can be used.

Consider the sketch in Figure 1.4 which plots the diastolic blood pressure (DBP)

readings for individuals with different allelic values at locus x . The readings for

individuals with x = 1 are distinctly higher than the individuals with x = 0, providing

the intuition that allelic values at locus x are correlated with DBP. Is it better to consider

this population as two classes (segregated by the allelic value at x), or as a single

class?

We make the assumption that the DBP values are normally distributed. The estimated

mean and variances of either class are (X̄0, S2
0 ) = (103, 109), (X̄1, S2

1 ) = (62, 76) for

n = 35 individuals in each class. We would like to know if the two mean values

are significantly different given the underlying variances. Intuitively, an allelic value

of 0 implies that the DBP will be at least 103 − 2
√

109 � 82. On the other hand,

the DBP for allelic value 1 is rarely greater than 62 + 2
√

76 � 79. Given that the

allelic values help predict the DBP somewhat tells us that the locus x is associated.
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Formally, assuming the null hypothesis of no association between x and DBP, the

t-statistic

T = X̄0 − X̄1√
S2

0
n + S2

1
n

(1.5)

must follow the Student’s t distribution, with 2n − 2 degrees of freedom, and we can

use that to compute a p-value. In this case, the t-statistic is T = 17.8 (df = 68), with

a p-value less than 0.0001, and the correlation is very strong.

4.2 Genotypes and extensions
The astute reader has undoubtedly noticed a discrepancy. The phenotype is assigned to

an individual containing a pair of chromosomes. However, we are computing associa-

tions against a population of chromosomes. To correct this discrepancy, we consider

the genotype of an individual. Consider a locus x with two allelic values 0, 1 in a

population. Each individual belongs to one of three classes, depending on the allelic

pair, 00, 01, and 11. The test for associations can be modified to accommodate this. For

case–control tests, we have a 3 × 2 contingency table, and can measure significance

using a χ2 test with 2 degrees of freedom. For continuous variables, an analog of the

t-test for multiple groups (the F-test) is often used.

In fact, these ideas can be extended even further. We had made the assumption that

a location is only mutated once in our history. That may not always be. Each locus

may have between 2 and 4 alleles, with each individual contributing a pair of alleles.

Indeed, there is no reason to restrict ourselves to a single polymorphic locus. We

could consider a chain of proximal loci. Having individuals placed in multiple classes

(bins) with continuous phenotypes is not technically difficult, but often leads to the

problem of under-sampling. The higher the number of bins, the fewer the number of

individuals in each bin, and the higher the chance of a false correlation. We explain

this principle with a simple example. Consider a fair-coin. If we toss 2n coins, and put

them appropriately in two bins, HEADS and TAILS, we expect to see a similar number

(� n) of coins in each bin. If the discrepancy is large, we conclude that the coin is

loaded. However, what if we tossed only 1 coin? It must fall in one of the 2 bins,

and the discrepancy is 100%. To get around this, we need to increase the number of

individuals (increasing the cost of the experiment), or decrease the number of bins.

While not possible in this simple example, creative ways to reduce the number of bins

are a large part of the design of statistical tests.
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4.3 Linkage versus association
Let’s revisit the essential ideas from Section 2. One, SNPs are correlated due to

a common evolutionary history, starting from the MRCA. Two, this correlation is

destroyed among distant loci due to recombination events. In this discussion, we were

silent on the actual number of recombination events.

Recombination events can be assumed to be Poisson-distributed, with a rate of

r crossovers per generation per base pair (bp). Consider two loci x, y that are �

bp apart, and let D(t) denote the LD at time t . If the allele frequencies do not

change over generations (the so-called “Hardy–Weinberg equilibrium”), then we can

show

D(t) = (1 − r�)D(t−1) = (1 − r�)t D(0) � e−r�t D(0).

Clearly, LD decreases with both time t , and distance �, eventually going to 0 (Linkage

Equilibrium). For two randomly chosen individuals, the common ancestor is many

generations in the past (indeed, by symmetry arguments, we can see that it is very

close to the time of the original MRCA). In practice, this means that two loci only have

to be 50–100 Kbp apart to reach linkage equilibrium. Therefore, in order for us not to

miss the causal locus, we need to test with a dense collection of markers through the

genome. Until recently, this was prohibitively expensive, and researchers looked for

ways to reduce the number of recombination events so that distant markers remained

in LD.

One approach is to choose individuals who share a recent common ancestor; simply

choose case and control individuals from a family. In the family, the time to MRCA

is small (a few generations), and LD is maintained even over large � (∼Mbp). For

every polymorphic marker (SNP) in the family, researchers test whether an allele

cosegregates with the case phenotype. If so, the marker is considered linked. Among

family-based tests, we have tests for linkage, and for association, but we will not

consider these further.

Of course, there is no free lunch here. The long-range LD among family members

means that a sparse collection of markers is sufficient for identifying cosegregating or

linked markers, implying a cheaper test. On the other hand, the sparsity of markers

also implies that after linkage is found, a lot of work needs to be done to zero in on

the causal locus. Often, an association test using a dense map of markers in the region

from unrelated case–control individuals is necessary for fine mapping. Today, with

the ability to use chips to sample multiple locations simultaneously, and to genotype

many individuals, genome-wide tests of association are becoming more common. At

the same time, family-based tests are still worthwhile, as they are often immune to
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some of the confounding problems for associations. We will not discuss this in detail,

but the interested reader should look to the section on population substructure and rare

variants.

5 Confound it

The underlying principles of genetic association are elegant and simple, and indeed can

be derived using extensions of Mendel’s laws. However, the genetic etiology of complex

diseases is, well, complex, and can confound these tests. Understanding confounding

factors is central to making the right inferences. We mention a few below.

5.1 Sampling issues: power, etc.
For the test to be successful, it must have a low false-positive (type I) error rate α,

and high power, defined as 1 − β, where β is the false-negative rate. Setting a p-value

cutoff for association (as discussed in Section 2) is one way to bound α. Typically, one

would only consider loci x , whose LD with the case–control status has a p-value no

more than α. However, the number of tests (loci) also play into this. For a genome-

wide scan, we are testing at many (m � 500 K) independent loci. A straightforward

(Bonferroni) correction is as follows: if the chance of making a false call at a locus is

α, the chance of making a false call at some locus is mα.

Usually, the strategy is to fix α to some desired value, and to maximize the power

of the test. Here is an informal description of estimating power of a case–control

test. Let Pφ and P denote the minor allele frequencies (MAF) at a locus in controls

and cases, respectively. The two should be equal in the absence of association, so

one way to restate the association test is to look for loci at which P 
= Pφ . What if

there was a small but significant difference? Suppose the number of cases carrying the

minor allele is U . Under the null hypothesis (no association, (Pφ = P)), U is normally

(N (nPφ,
√

nPφ(1 − Pφ))) distributed. See the blue curve in Figure 1.5. The threshold

for significance is chosen based on the type I error α. Suppose the alternative is true,

so that P 
= Pφ . The false-negative rate β can be computed as the probability that U

is drawn from the red curve but just happens by chance to lie before the threshold, so

the null hypothesis cannot be rejected. Formally, the power is the area of the red curve

that lies outside the threshold. With increasing sample size, the distance between the

mean of the two curves (n(P − Pφ)) increases, while the “spread” of the red curve

(described by the s.d.
√

nPφ(1 − Pφ)) does not increase proportionately. Therefore,

power is increased by increasing the sample size n.
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Figure 1.5 Power of an association test. P φ, P denote the minor allele frequencies at a locus
for controls and cases, respectively. The distribution of minor allele frequencies for controls
and cases is denoted by the blue and red curves. We fail to detect a true association if the
sample is drawn from the red curve, but the minor allele frequency is below the threshold of
rejecting the null hypothesis.

5.2 Population substructure
Sickle cell anemia is a disease in which the body makes abnormal (sickle-shaped) red

blood cells, leading to anemia and many related symptoms. If left untreated, the disease

can lead to organ failure and death. It is inherited in a recessive fashion (both alleles

need to be mutated in order to present the phenotype), and is common in people of

African origin. Consider a typical case–control study as in Figure 1.6. Not surprisingly,

a marker in the Duffy locus (which has been implicated previously) shows up with

an association to the phenotype. However, we have made a poor design choice in not

controlling for structure in populations. Without explicit controls, we find that most

case individuals are people of African origin (marked with an A), while most controls

are of European origin. Therefore, markers at the locus responsible for skin color also

show a strong association with the phenotype, and confound the test.
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Figure 1.6 Population substructure. As sickle cell anemia is more common in Africans
compared to Europeans, the cases and controls can come from different subpopulations. If
not corrected, any locus that differentiates between the two subpopulations (such as skin
pigmentation) will also correlate with the sickle-cell phenotype, confounding the test.

In general, the problem of population substructure has received much attention.

Clearly, care must be taken to choose cases and controls from the same underlying

population. As can be imagined, migration and recent admixture of populations can

make this difficult, even with self-reported ethnicity. One computational strategy relies

on identifying LD between pairs of markers that are too far apart to have significant

LD. Long-range LD is indicative of underlying population structure. To deal with

population substructure, either we can reduce all observed correlations appropriately,

or partition the populations into subpopulations before testing.

5.3 Epistasis
For complex alleles, it could be the case that multiple loci interact to affect the pheno-

type. Figure 1.7 provides a cartoon illustration of such interactions. Here, compensating

mutations in SNPs (T and G, or A and A) allow the encoded proteins to interact, but
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Figure 1.7 Epistatic interactions. Neither x nor locus y show any marginal association with
the phenotype. However, when considered together, the genotype T . . . G , and A . . . A
correlate perfectly with cases. Such interactions pose computational and statistical challenges
to identifying genotype phenotype correlations.

individual mutations destroy the lock and key mechanism. Therefore, neither locus

x nor y associates individually with the phenotype. However, if we considered x, y

together, the T . . . G and A . . . A suggest case status for the individual. Epistasis indeed

makes the problem of association much harder. In a genome-wide study with 500 K

markers, we would need to test a very large (2.5 · 1011) number of possible pairs. More

complex k-way interactions would be harder. In addition to increasing the computa-

tional challenge, the large number of tests would also make it far more likely to create

false-positive sets, requiring appropriate statistical corrections.

5.4 Rare variants
It can happen that multiple rare variants (RVs) influence a gene phenotype. For exam-

ple, the genomic region upstream of a gene acts as a regulatory switch. Transcription

factors bind to the upstream DNA, and switch the translation of the gene (produc-

tion of protein from the gene encoding) on and off. Any mutation in this region

could destroy a transcription factor binding site, and therefore the phenotype might

be established by a collection of non-specific mutations, each of which has a low fre-

quency but together mediate a large effect (explain the phenotype in a large number of

people).

However, several properties of rare variants make their genetic effects difficult to

detect with current approaches. As an example, if a causal variant is rare (10−4 ≤
MAF ≤ 10−1), and the disease is common, then the allele’s Population Attributable

Risk (PAR), and consequently the odds ratio (OR), will be low. Additionally, even



20 Part I Genomes

highly penetrant RVs are unlikely to be in Linkage Disequilibrium (LD) with more

common genetic variations that might be genotyped for an association study of a

common disease. Therefore, single-marker tests of association, which exploit LD-

based associations, are likely to have low power. If the Common Disease Rare Variant

(CDRV) hypothesis holds, a combination of multiple RVs must contribute to population

risk. In this case, there is a challenge of detecting multi-allelic association between a

locus and the disease.

DISCUSSION

The etiology of most (all?) diseases has a genetic basis. In addition, we display a
number of phenotypes (eye color) that are inherited. Understanding the genetic
basis of phenotypes continues to be a major focus of science today. Until recently,
technological limitations made the process arduous. For instance, the
identification of the gene for cystic fibrosis in 1989 came after a large multi-year
project. Today, with the rapid resequencing of human populations, and an
increasing knowledge of gene functions, we are able to focus on complex
disorders. In this chapter, we discuss the basics of testing by association, and the
problems that can confound these tests.

QUESTIONS

(1) Prove that the LD statistic D for binary alleles does not change depending upon the choice
of allele by showing the following:

|D| = ∣∣Pxy − Px Py

∣∣ = ∣∣Px̄ y − Px̄ Py

∣∣ = ∣∣Px ȳ − Px Pȳ

∣∣ = ∣∣Px̄ ȳ − Px̄ Pȳ

∣∣.
(2) The statistic D′ is a scaled measure of linkage disquilibrium. Show that 0 ≤ D′ ≤ 1.

(3) The locus X has two alleles, 0 and 1. 100 individuals were genotyped at locus X and also
checked for eye color. Their genotypes and eye color segregated as follows: 8 individuals
had (00, green), 38 had (01, green), and the remaining 54 individuals had (11, brown).
genotype 11 had brown eyes. Does locus X associate with eye color?
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FURTHER READING

The treatment here is a simplification of extensive literature from statistical
genetics. The basics of the coalesent process can be found in a good review
article by Nordborg [1]. The books by Durrett and also Hein, Schierup, and Wiuf
cover the topics in greater detail [2, 3]. An excellent overview of statistical
association tests is provided by Balding [4].

A classic, although somewhat dated, description of family-based linkage tests
is given in the book by Ott [5]. Most algorithms for linkage are derived from
Elston and Stewart (large pedigrees, few markers) [6], or Lander and Green
(smaller pedigrees, many markers) [7]. The TDT is widely cited as a successful test
for family-based association that is immune to population substructure [8].

Population substructure has been addressed in a number of recent papers, and
remains an area of active research [9, 10]. Evans and colleagues, and Cordell
provide a review of epistasis [11, 12]. Bodmer and Bonilla provide an introduction
to analysis with rare variants [13].

REFERENCES

[1] M. Nordborg. Coalescent theory. In: Handbook of Statistical Genetics. John Wiley & Sons,
2001.

[2] R. Durrett. Probability Models for DNA Sequence Evolution. Springer, New York, 2009.
[3] J. Hein, M. Schierup, and C. Wiuf. Gene Genealogies, Variation and Evolution: A Primer in

Coalescent Theory. Oxford University Press, Oxford, 2005.
[4] D. J. Balding. A tutorial on statistical methods for population association studies. Nat. Rev.

Genet., 7:781–791, 2006.
[5] J. Ott. Analysis of Human Genetic Linkage. The Johns Hopkins University Press, Baltimore,

1991.
[6] R. C. Elston and J. Stewart. A general model for the genetic analysis of pedigree data.

Hum. Hered., 21:523–542, 1971.
[7] E. S. Lander and P. Green. Construction of multilocus genetic linkage maps in humans.

Proc. Natl Acad. Sci. U S A, 84(8):2363–2367, 1987.
[8] R. S. Spielman and W. J. Ewens. The TDT and other family-based tests for linkage

disequilibrium and association. Am. J. Hum. Genet., 59:983–989, 1996.



22 Part I Genomes

[9] A. L. Price, N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick, and D. Reich.
Principal components analysis corrects for stratification in genome-wide association
studies. Nat. Genet., 38:904–909, 2006.

[10] J. K. Pritchard, M. Stephens, and P. Donnelly. Inference of population structure using
multilocus genotype data. Genetics, 155(2):945–959, 2000.

[11] D. M. Evans, J. Marchini, A. P. Morris, and L. R. Cardon. Two-stage two-locus models in
genome-wide association. PLoS Genet., 2:e157, 2006.

[12] H. J. Cordell. Genome-wide association studies: Detecting gene–gene interactions that
underlie human diseases. Nat. Rev. Genet., May 2009.

[13] W. Bodmer and C. Bonilla. Common and rare variants in multifactorial susceptibility to
common diseases. Nat. Genet., 40(6):695–701, 2008.



CHAPTER TWO

Pattern identification in a
haplotype block

Kun-Mao Chao

A Single Nucleotide Polymorphism (SNP, pronounced snip) is a single nucleotide variation in
the genome that recurs in a significant proportion of the population of a species. In recent
years, the patterns of Linkage Disequilibrium (LD) observed in the human population reveal a
block-like structure. The entire chromosome can be partitioned into high-LD regions, referred
to as haplotype blocks, interspersed by low-LD regions, referred to as recombination hotspots.
Within a haplotype block, there is little or no recombination and the SNPs are highly
correlated. Consequently, a small subset of SNPs, called tag SNPs, is sufficient to distinguish
the haplotype patterns of the block. Using tag SNPs for association studies can greatly reduce
the genotyping cost since it does not require genotyping all SNPs. We illustrate how to recast
the tag SNP selection problem as the set-covering problem and the integer-programming
problem – two well-known optimization problems in computer science. Greedy algorithms and
LP-relaxation techniques are then employed to tackle such optimization problems. We
conclude the chapter by mentioning a few extensions.

1 Introduction

A DNA sequence is a string of the four nucleotide “letters” A (adenine), C (cyto-

sine), G (guanine), and T (thymine). The genetic variations in DNA sequences have a

major impact on genetic diseases and phenotypic differences. Among various genetic

variations, the Single Nucleotide Polymorphism (SNP, pronounced snip) is one of the

Bioinformatics for Biologists, ed. P. Pevzner and R. Shamir. Published by Cambridge University Press.
C© Cambridge University Press 2011.
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Figure 2.1 A haplotype block containing five SNPs and four haplotype patterns. In this figure,
a blue square stands for a major allele and a red square stands for a minor allele.

most frequent forms and has fundamental importance for disease association and drug

design. A SNP is a single nucleotide variation in the genome that recurs in a significant

proportion of the population of a species. Specifically, a single nucleotide mutation is

called a SNP if its minor allele frequency is no less than a given threshold, say 1%. For

example, a mutation in the genome in which 85% of the population have a G and the

remaining 15% have an A is a SNP. Since tri-allelic and tetra-allelic SNPs are very rare,

we often refer to a SNP as a bi-allelic marker: major allele vs. minor allele. Millions

of SNPs have been identified and made publicly available.

In recent years, the patterns of Linkage Disequilibrium (LD) observed in the human

population have revealed a block-like structure. LD refers to the association that

particular alleles at nearby sites are more likely to occur together than would be

predicted by chance. The entire chromosome can be partitioned into high-LD regions

interspersed by low-LD regions. The high-LD regions are usually called “haplotype

blocks,” and the low-LD ones are referred to as “recombination hotspots.” Since there

is little or no recombination within a haplotype block, these SNPs are highly correlated.

Consequently, a small subset of SNPs, called tag SNPs or haplotype tagging SNPs,

is sufficient to categorize the haplotype patterns of the block. It is thus possible to

identify genetic variation without genotyping every SNP in a given haplotype block.

This can greatly reduce the genotyping cost for genome-wide association studies.

In this study we assume that the haplotype blocks have been delimited in advance,

and our objective is to find a minimum set of SNPs which can distinguish all pairs of

haplotype patterns in a given block. Figure 2.1 depicts a haplotype block containing

five SNPs and four haplotype patterns. To determine which haplotype pattern category

a sample belongs to, we may genotype all five SNPs in this block. However, it works just

as well if we only genotype SNPs S1 and S4, since their combinations can distinguish

all pairs of haplotype patterns. For example, if both S1 and S4 are major alleles, the

sample is categorized as haplotype pattern P3.
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Figure 2.2 Selecting tag SNPs that can distinguish all pairs of haplotype patterns. (a) SNPs S1

and S4 form a minimum set of tag SNPs. (b) SNPs S1, S2, and S5 do not form a set of tag SNPs
since they cannot distinguish the pair P 1 and P 4.

We show that the tag SNP selection problem is analogous to the minimum test

collection problem. We then illustrate how to recast the tag SNP selection problem as the

set-covering problem and solve it approximately by a greedy algorithm. Furthermore,

it can be formulated as an integer-programming problem, and a simple rounding

algorithm can be employed to find its near-optimal solutions. We conclude this chapter

by mentioning a few extensions.

2 The tag SNP selection problem

Assume that we are given a haplotype block containing n SNPs and h haplotype

patterns. Let S = {S1, S2, ..., Sn} denote the SNP set and let P = {P1, P2, ..., Ph}
denote the pattern set. A haplotype block is represented by an n × h binary matrix

M whose entries are either a blue square or a red square, representing the major and

minor alleles, respectively. Figure 2.1 depicts a 5 × 4 haplotype block.

We say that SNP Si can distinguish the pattern pair Pj and Pk if M[i, j] 
= M[i, k],

where 1 ≤ i ≤ n and 1 ≤ j < k ≤ h. In other words, if one pattern contains a major

allele of SNP Si , and the other contains a minor allele of SNP Si , then the two patterns

can be distinguished by Si . For instance, in Figure 2.1, SNP S1 can distinguish patterns

P1 and P4 from P2 and P3 since P1 and P4 contain a minor allele of S1, and P2 and

P3 contain a major allele of S1. The goal of the tag SNP selection problem is to find

a minimum number of SNPs that can distinguish all possible pairwise combinations

of patterns. In Figure 2.2, S1 and S4 form a set of tag SNPs since they can distinguish

all pairs in P , whereas S1, S2, and S5 do not form a set of tag SNPs since they cannot

distinguish the pair P1 and P4.

In fact, the tag SNP selection problem is analogous to the minimum test collection

problem, which arises naturally in fault diagnosis and pattern identification. Given a
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collection C of subsets of a finite set A of “possible diagnoses,” the minimum test

collection problem is to ask for a subcollection C ′ ⊆ C such that |C ′| is minimized and,

for each pair a j , ak ∈ A, there exists some set (i.e. a test) in C ′ that contains exactly

one of them. In other words, such a test can distinguish the pair a j , ak . Take Figure 2.1,

for example. SNP S1 can distinguish patterns P1 and P4 from others, thus we include

{P1, P4} in C. Similarly, each of SNPs S2, S3, S4, and S5 can distinguish a particular

set of patterns from others. It follows that the instance of the minimum test collec-

tion problem for Figure 2.1 is A = {P1, P2, P3, P4} and C = {{P1, P4}, {P2}, {P3, P4},
{P2, P4}, {P3}}. Its minimum subcollection C ′ is {{P1, P4}, {P2, P4}} since |C ′| = 2 is

minimal and C ′ can distinguish all pairs in A. The corresponding set of tag SNPs for

C ′ is {S1, S4}.
Unfortunately, the minimum test collection problem has been proved to be NP-

hard, which is a technical term that stands for a class of intractable problems for

which no efficient algorithms have been found. Nevertheless, we may employ some

algorithmic strategies to tackle NP-hard problems by finding near-optimal solutions;

in practice, these solutions are often good enough. In the next section, we show that the

tag SNP selection problem can be reformulated as the set-covering problem, which is

well studied in the field of approximation algorithms. By this reformulation, a simple

greedy method for the set-covering problem can be employed for solving the tag SNP

selection problem. The algorithm may not always deliver an optimal solution, but we

will show that the ratio of its solution to an optimal solution is bounded by a certain

factor.

3 A reduction to the set-covering problem

We now recast the tag SNP selection problem as the set-covering problem. Given a

universal set U and a collection C of subsets of U , the set-covering problem is to find a

minimum-size subcollection of C that covers all elements of U . It is an abstraction of

many naturally arising combinatorial problems, such as crew scheduling, committee

forming, and service planning. For example, a universal set U could represent a set of

skills required to perform a task. Each person in the candidate pool has certain skills

in U . The objective is to form a task force with as few people as possible so that all

the required skills are owned by at least one person in the task force. In other words,

we wish to recruit a minimum number of persons to cover all the requisite skills.

Recall that a haplotype block is represented by an n × h binary matrix M whose

entries are either a blue square (representing a major allele) or a red square (represent-

ing a minor allele). To reformulate the tag SNP selection problem as a set-covering

problem, let U = {( j, k) | 1 ≤ j < k ≤ h} be the set of all possible pairwise haplotype
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Figure 2.3 The elements covered by C 1, which correspond to the pairs of haplotype patterns
distinguished by SNP S1.
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Figure 2.4 The elements covered by each C i in C.

pattern indexes. Let C = {C1, C2, ..., Cn}, where Ci = {( j, k) | M[i, j] 
= M[i, k] and

1 ≤ j < k ≤ h} stores the index pairs of haplotype patterns that SNP Si ∈ S can

distinguish. We show that a subset of S forms a set of tag SNPs if and only if its

corresponding subset of C covers all the elements in U . Each element in U represents

a pair of haplotype patterns needed to be distinguished. If a subset of C covers all the

elements in U , then its corresponding SNP subset of S forms a set of tag SNPs since

all pairs of haplotype patterns can be distinguished. Conversely, if a subset of S forms

a set of tag SNPs, it can distinguish all pairs of haplotype patterns, which yields that

its corresponding subset of C covers all the elements in U .

Now let us consider the example given in Figure 2.1. We have four haplotype patterns,

so the universal set U is {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}, which contains all

the elements to be covered. Since SNP S1 can distinguish patterns P1 and P4 from

P2 and P3, we set C1 to be {(1, 2), (1, 3), (2, 4), (3, 4)} (see Figure 2.3). SNP S2 can

distinguish pattern P2 from P1, P3, and P4, so we set C2 to be {(1, 2), (2, 3), (2, 4)}.
Figure 2.4 depicts the pairs of haplotype patterns distinguished by each SNP. As a
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Figure 2.5 An invalid set cover. Element (1, 4) is not covered by C 1, C 2, and C 5.

(1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

U

C

C1 C2 C4 C5C3

Figure 2.6 A valid set cover. All elements are covered by C 1 and C 4.

consequence, the collection C of subsets is {C1, C2, C3, C4, C5}, where

C1 = {(1, 2), (1, 3), (2, 4), (3, 4)},
C2 = {(1, 2), (2, 3), (2, 4)},
C3 = {(1, 3), (1, 4), (2, 3), (2, 4)},
C4 = {(1, 2), (1, 4), (2, 3), (3, 4)}, and

C5 = {(1, 3), (2, 3), (3, 4)}.
As shown in Figure 2.2(b), S1, S2, and S5 do not form a set of tag SNPs since

they cannot distinguish the pair P1 and P4. In the corresponding set-covering instance,

element (1, 4) is not covered by C1, C2, and C5 (see Figure 2.5).

On the contrary, S1 and S4 form a set of tag SNPs since they can distinguish all pairs

in P . In the corresponding set-covering instance, each element is covered by at least

one set in C (see Figure 2.6).

Now let us consider a greedy method for the set-covering problem. The greedy

algorithm iteratively picks the set that covers the most remaining uncovered elements



2 Pattern identification in a haplotype block 29

until all elements are covered. In the context of the tag SNP selection problem, the

algorithm iteratively chooses the SNP that distinguishes the most remaining undistin-

guished pairs until all pairs of haplotype patterns are distinguished.

The SET-COVER-GREEDY algorithm takes as an input a universal set U and a colletion

C of subsets of U . Let R store the uncovered elements in U , which is initially set to be

U because all elements are uncovered at the beginning of the procedure. C ′ stores the

selected sets and is initialized as an empty set. While R is not empty, we choose the

set Ci ∈ C that can cover the most elements in R. Ci would essentially cover the most

uncovered elements in U . Then we include Ci in C ′ and remove from R the elements

that are covered by it. Repeat this procedure until all elements are covered.

Algorithm: SET-COVER-GREEDY (U , C)
1 R ← U
2 C′ ← φ

3 while R 
= φ do
4 Select a set Ci from C that maximizes |Ci ∩ R|
5 C ′ ← C ′ ∪ {Ci }
6 R ← R − Ci

7 endwhile
8 return C ′

The subcollection of sets, C ′, returned by the SET-COVER-GREEDY algorithm is valid

as long as each element of U is covered by at least one set in C. However, the size

of C ′ may not always be minimal over all possible valid set covers. For example,

let U = {1, 2, 3, 4, 5, 6, 7, 8, 9} and C = {C1, C2, C3}, where C1 = {2, 3, 4, 5, 6, 7},
C2 = {1, 2, 3, 4, 5}, and C3 = {5, 6, 7, 8, 9}. The greedy algorithm will first pick C1

since it covers the most elements. After this choice, it will also need to pick C3

followed by C2 to form a valid set cover. The resulting C ′ is {C1, C2, C3}. However,

for this instance, the minimum set cover is {C2, C3} since all the elements in U can be

covered by C2 and C3 without including C1.

Although the SET-COVER-GREEDY algorithm may not always deliver the minimum

set cover, its solution is in fact not too far away from an optimal one. Assume that

C∗ is an optimal set cover. Let |X | denote the size (cardinality) of a given set X .

We show that |C ′| can be bounded by |C∗| times a reasonable factor. To calculate the

bound, we distribute the covering cost of a selected set to the elements it covers. For

the example given in the previous paragraph, the covering order of the elements by

the greedy algorithm might be [2, 3, 4, 5, 6, 7, 8, 9, 1] because each of the elements in

{2, 3, 4, 5, 6, 7} is covered for the first time by C1 in the first iteration, and then {8, 9}
by C3 in the second iteration, and {1} by C2 in the last iteration. Since C1 covers six

uncovered elements, each element in {2, 3, 4, 5, 6, 7} shares a cost of 1/6. Similarly,
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each element in {8, 9} shares a cost of 1/2, and the element in {1} shares a cost of 1. The

covering cost for each element in order is [1/6, 1/6, 1/6, 1/6, 1/6, 1/6, 1/2, 1/2, 1].

Summing these costs would get 3, which is the size of the set cover, C ′, delivered by

the greedy algorithm.

Let [u1, u2, ..., u|U |] be the elements in the order in which they are covered by the

SET-COVER-GREEDY algorithm. A key observation here is that the cost shared by uk is at

most |C∗|/(|U | − k + 1) for 1 ≤ k ≤ |U |. In the iteration when uk is covered, there are

at least |U | − k + 1 elements still uncovered, and certainly these uncovered elements

can be covered by C∗, which gives an average shared cost of |C∗|/(|U | − k + 1). Since

the greedy algorithm covers the most uncovered elements, its shared cost for each

element in any iteration is the minimum. It follows that the cost shared by uk is no

more than |C∗|/(|U | − k + 1). In other words, the covering cost for [u1, u2, ..., u|U |] is

no more than [|C∗|/|U |, |C∗|/(|U | − 1), . . . , |C∗|], respectively. Since the size of C ′ is

the sum of the costs shared by uk for 1 ≤ k ≤ |U |, we have

|C ′| ≤ (1 + 1

2
+ · · · + 1

|U | ) × |C∗|. (2.1)

The series 1 + 1/2 + · · · + 1
|U | is called the harmonic series. It grows very slowly.

For instance, it sums approximately to 2.929 when |U | = 10, to 5.187 when |U | = 100,

to 7.485 when |U | = 1,000, and to 14.393 when |U | = 1,000,000. As a matter of

fact, the harmonic series 1 + 1/2 + · · · + 1/|U | is bounded by 1 + ∫ |U |
1 1/x dx , which

yields the bound loge |U | + 1. Furthermore, this factor is only a worst-case analysis,

and the real approximation ratio could be even better.

4 A reduction to the integer-programming problem

Linear programming is a general formulation of problems involving maximizing or

minimizing a linear objective function subject to certain linear constraints. The fol-

lowing is a simple example.

Minimize x1 + x2

Subject to x1 + 2x2 ≥ 2,

3x1 + x2 ≥ 3,

x1 ≥ 0,

x2 ≥ 0.

Here the linear objective function is x1 + x2, and there are four linear constraints

x1 + 2x2 ≥ 2, 3x1 + x2 ≥ 3, x1 ≥ 0, and x2 ≥ 0. By graphing the constraints on

the plane, we observe that the objective function x1 + x2 (lines with slope −1, see
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Figure 2.7 A feasible region defined by the four linear constraints x1 + 2x2 ≥ 2,
3x1 + x2 ≥ 3, x1 ≥ 0, and x2 ≥ 0.

Figure 2.7) is minimized when x1 = 4/5 and x2 = 3/5, a corner point where the line

x1 + 2x2 = 2 and the line 3x1 + x2 = 3 intersect.

If we impose the extra constraints that the values of the variables are integers, then

the problem is called integer linear programming or simply integer programming. In

the above example, if both x1 and x2 are required to be integers, the problem becomes

an integer-programming problem.

Now we show how to formulate the tag SNP selection problem as an integer-

programming problem. Recall that we are given a haplotype block containing n SNPs

and h haplotype patterns. Let us assign a variable xi for each SNP Si ∈ S . Variable

xi is set to be 1 if SNP Si is selected and set to be 0 otherwise. Define D(Pj , Pk) as

the set of SNPs which can distinguish between patterns Pj and Pk , 1 ≤ j < k ≤ h.

Each pair of patterns must be distinguished by at least one SNP. Therefore, for each set

D(Pj , Pk), at least one SNP has to be selected to distinguish between patterns Pj and

Pk . The following integer program formulates the tag SNP selection problem whose

objective is to minimize the number of selected SNPs.

Minimize
n∑

i=1

xi

Subject to
∑

Si ∈D(Pj ,Pk )

xi ≥ 1, for all 1 ≤ j < k ≤ h,

xi = 0 or 1, for all 1 ≤ i ≤ n.

In Figure 2.1, the pair P1 and P2 can be distinguished by SNPs S1, S2, and S4.

Thus, we have D(P1, P2) = {S1, S2, S4}, which yields the constraint x1 + x2 + x4 ≥ 1.

Similarly, D(P1, P3)={S1, S3, S5}, D(P1, P4)={S3, S4}, D(P2, P3)={S2, S3, S4, S5},
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D(P2, P4) = {S1, S2, S3}, and D(P3, P4) = {S1, S4, S5}. By examining all possible

pairs of haplotype patterns, we obtain the following integer program for Figure 2.1.

Minimize x1 + x2 + x3 + x4 + x5

Subject to x1 + x2 + x4 ≥ 1,

x1 + x3 + x5 ≥ 1,

x3 + x4 ≥ 1,

x2 + x3 + x4 + x5 ≥ 1,

x1 + x2 + x3 ≥ 1,

x1 + x4 + x5 ≥ 1,

x1, x2, x3, x4, x5 = 0 or 1.

In the above integer program, if we set x1 and x4 to be 1 and the rest of the xi ’s to

be 0, then all constraints are satisfied. Consequently, the set of SNPs S1 and S4 can

distinguish all pairs of haplotype patterns and its size is minimized. However, if we set

x1, x2, and x5 to be 1 and set x3 and x4 to be 0, then the third constraint x3 + x4 ≥ 1

(for distinguishing P1 and P4) is not satisfied. This implies that SNPs S1, S2, and S5

do not form a set of tag SNPs since patterns P1 and P4 cannot be distinguished.

All variables xi s are required to be 0 or 1. Such an integral constraint makes the

problem much harder to solve. In fact, both integer programming and 0–1 integer

programming have been shown to be NP-hard as has the set-covering problem. It

should be noted, however, that without the integral constraint, this integer program

becomes a linear program in which variables can be fractional numbers, and fast

algorithms, such as the simplex algorithm by George Dantzig, are available for solving

it. A general strategy for solving the 0–1 integer-programming problems is thus to

replace the integral constraint that each variable must be 0 or 1 by a weaker constraint

that each variable be a number in the interval [0,1]. This process is referred to as a

linear-programming relaxation. After the relaxation, the solution to the relaxed linear

program may assign fractional values to the variables. For the above integer program,

if we set x1, x3, and x4 to be 0.5 and set x2 and x5 to be 0, all the constraints can be

satisfied except the last integral constraint. Several techniques, such as randomized

rounding, can cope with the linear-programming relaxation to derive heuristic integral

solutions for the original unrelaxed integer program. A widely used idea for rounding

a fractional solution is to use their fractions as probabilities for rounding. The heuristic

solutions may not be optimal, but often their quality can be assured by a logarithmic

approximation ratio.
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DISCUSSION

In this chapter, we reformulate the tag SNP selection problem as two well-known
optimization problems in computer science – the set-covering problem and the
integer-programming problem. Both problems are hard to solve, yet efficient
approximation algorithms can be used to find their near-optimal solutions.

In reality, some tag SNPs may be missing, and we may fail to distinguish two
haplotype patterns due to the ambiguity caused by missing data. To conquer this,
either we genotype a larger set of tag SNPs for tolerating missing data, or
re-genotype some auxiliary tag SNPs to resolve the ambiguity on the fly. We can
handle these extensions by modifying the formulations.

It should be noted that selecting tag SNPs within a haplotype block is only one
of the models for selecting tag SNPs. An alternative is to identify a minimum set
of bins, each of which contains highly correlated SNPs. Such an approach
identifies a minimum set of tag SNPs that can represent all other SNPs which
might be far apart, whereas the block-based methods considered in this chapter
are mainly focused on representing all other SNPs in a short contiguous region.
Furthermore, some methods may assume that the number of tag SNPs is specified
as an input parameter and identify tag SNPs which can reconstruct the haplotype
of an unknown sample with high accuracy.

QUESTIONS

(1) Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9} and C = {C1, C2, C3, C4, C5}, where
C1 = {2, 3, 4, 5, 6, 7}, C2 = {1, 2, 3, 4}, C3 = {6, 7, 8, 9}, C4 = {1, 3, 5, 7, 9}, and
C5 = {2, 4, 6, 8}. Find a minimum-size subcollection of C that covers every element of U .

(2) Suppose that a set of skills is needed to accomplish a given task, and we have a list of
people, each with their own skills. Our objective is to form a task force with as few people
as possible such that for each requisite skill, we can always find someone in the task force
having that skill. Formulate this problem as a set-covering problem.

(3) Solve the following linear program.

Minimize x1 + x2

Subject to x1 + 2x2 ≥ 4,

3x1 + x2 ≥ 6,

x1 ≥ 0,

x2 ≥ 0.
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BIBLIOGRAPHIC NOTES AND FURTHER READING

This chapter presents two algorithmic approaches for solving the tag SNP
selection problem. Readers can refer to algorithm textbooks for more algorithmic
details. For instance, the algorithm book (or “The White Book”) by Cormen
et al. [1] is a comprehensive reference of data structures and algorithms with a
solid mathematical and theoretical foundation. The minimum test collection
problem was shown to be NP-hard via a reduction from the three-dimensional
matching problem by Garey and Johnson [2].

An early review paper by Brookes [3] provides a good orientation for readers
who are not familiar with SNPs. Millions of SNPs have been identified, and these
data are now publicly available [4–6]. The Phase II HapMap has characterized over
3.1 million human SNPs genotyped in 270 individuals from 4 geographically
diverse populations [5]. The dbSNP database is a public-domain archive for a
broad collection of SNPs [6].

In a large-scale study of human Chromosome 21, Patil et al. [7] developed a
greedy algorithm to partition the haplotypes into 4,135 blocks with 4,563 tag
SNPs. It was later refined by Zhang et al. [8, 9] and Chang et al. [10].
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CHAPTER THREE

Genome reconstruction: a
puzzle with a billion pieces

Phillip E. C. Compeau and Pavel A. Pevzner

While we can read a book one letter at a time, biologists still lack the ability to read a DNA
sequence one nucleotide at a time. Instead, they can identify short fragments (approximately
100 nucleotides long) called reads; however, they do not know where these reads are located
within the genome. Thus, assembling a genome from reads is like putting together a giant
puzzle with a billion pieces, a formidable mathematical problem. We introduce some of the
fascinating history underlying both the mathematical and the biological sides of DNA
sequencing.

1 Introduction to DNA sequencing

1.1 DNA sequencing and the overlap puzzle
Imagine that every copy of a newspaper has been stacked inside a wooden chest.

Now imagine that chest being detonated. We will ask you to further suspend your

disbelief and assume that the newspapers are not all incinerated, as would assuredly

happen in real life, but rather that they explode cartoonishly into tiny pieces of confetti

(Figure 3.1). We will concern ourselves only with the immediate journalistic problem

at hand: what did the newspaper say?

This “newspaper problem” becomes intellectually stimulating when we realize that

it does not simply reduce to gluing the remnants of newspaper as we would fit together

the disjoint pieces of a jigsaw puzzle. One reason why this is the case is that we

Bioinformatics for Biologists, ed. P. Pevzner and R. Shamir. Published by Cambridge University Press.
C© Cambridge University Press 2011.
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stack of NY Times,
June 27, 2000

stack of NY Times, June 27,
2000 on a pile of dynamite

so, what did the June 27, 2000
NY Times say?

this is just hypothetical

Figure 3.1 The exploding newspapers.

have probably lost some information from each copy (the content that was blown

to smithereens). However, we can also see that because the chest contained many

identical copies of the same newspaper, different shreds of paper may overlap and

therefore contain some of the same information. The newspaper problem therefore

induces what we will call an overlap puzzle.

We reiterate that our analogy of exploding newspapers is far-fetched, but the newspa-

per problem nevertheless captures the essence of fragment assembly in DNA sequenc-

ing. The technology for “reading” an entire genome nucleotide by nucleotide, like read-

ing a newspaper one letter at a time, remains unknown. At the same time, researchers

can indirectly interpret short sequences of DNA, which are referred to as reads; the

most popular modern technology produces reads that are only 100 nucleotides long

(Figure 3.2). The idea behind DNA sequencing, then, is to generate many reads from

multiple copies of the same genome, which results in a giant overlap puzzle. For

instance, a three billion-nucleotide mammalian genome requires an overlap puzzle

with a billion (overlapping) pieces, the largest such puzzle ever assembled.

The problem of genome sequencing therefore reduces to read generation (a bio-

logical problem) and fragment assembly (an algorithmic problem). Read generation
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Multiple Genome Copies

Reads  

Figure 3.2 In DNA sequencing, multiple (typically more than a billion) copies of a genome are
broken in random locations to generate much shorter reads.

has its own long and tangled history that dates to the 1970s, when Walter Gilbert and

Fred Sanger won the Nobel Prize for inventing the first read generation technology.

In the early 1990s, modern DNA sequencing machines hit the market and the era of

high-throughput DNA sequencing began. In 2000, a few hundred such machines work-

ing around the clock for over a year eventually generated enough reads to enable the

fragment assembly of the human genome, which was completed within a few months

by some of the world’s most powerful supercomputers.

1.2 Complications of fragment assembly
Although we shall discuss read generation in some detail at the end of the chapter,

our primary target is the computational problem of fragment assembly, or using the

generated reads to infer the original genome.

We begin by noting that although we have seen that both the newspaper problem

and fragment assembly reduce to solving an overlap puzzle, fragment assembly is

substantially more difficult for several reasons, and not simply because of the sheer

scale of reconstructing a genome from a billion reads. First, keep in mind that a

newspaper is written in some understood language, whose rules will provide us with

context clues as to how different shreds of paper may or may not be connected,

regardless of whether these shreds overlap (see Figure 3.3a). Yet the rules for the

“language” of DNA still mostly elude biologists, and so it is practically impossible to

determine how two non-overlapping reads might be connected.

A second complication of fragment assembly is that the underlying nucleotide

“alphabet” for DNA contains only four letters: A, T, G, and C. Working with a small
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e murder occurred at approximately 5:2 

g a blue hoodie , appr oximately 6’2” 180 

ice have not yet named any suspects, alt 

y infor e camation is welc  

(a)

nmentalists ha ve cited low levels of oz a

a ome of  the world’s most visi

zone as a contributing facto 

what they see as a continu

(b)

(c)

T A G G C C A T G T C A G A TG

     C A T G T C A G A T G C G T A G  

(d)

Figure 3.3 Complications of fragment assembly. (a) In the newspaper assembly problem,
we can see that even though these two shreds do not overlap they are nevertheless probably
connected, because we know that “murder” and “suspect” are highly correlated words.
(b) In the newspaper problem,“oz” and “zone” are likely the remnants of “ozone,” and we
can connect these two shreds even though they overlap in just one letter. In the DNA assembly
problem, with only four letters in the underlying alphabet, such clues are not available.
(c) Repeated regions complicate assembly, as demonstrated by the Triazzle R©. Note that every
frog in the Triazzle appears at least three times. (d) DNA sequencing machines are not perfect.
Here, the red ‘T’ was incorrectly sequenced and should be a ‘C’; this mistake of only one
nucleotide may cause these two reads to be interpreted as overlapping when they are not.
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alphabet actually complicates the reconstruction of the original sequence, because

we will observe a greater amount of fragment overlap that is purely attributable to

randomness. See Figure 3.3b.

Third, any DNA sequence contains a significant number of “conserved regions,”

or information that is repeated many times with minor changes. For example, the

approximately 300-nucleotide long Alu sequence occurs over a million times in the

human genome, with only a few nucleotides changed each time due to insertions,

deletions, or substitutions. Therefore, for any one particular fragment, it can become

difficult to identify the specific conserved region to which it belongs within the genome.

An appropriate illustration of this difficulty is the once-popular Triazzle R© puzzle. Even

though a Triazzle is a jigsaw puzzle with only 16 pieces, it contains identical figures

shared by multiple pieces, making a Triazzle much more difficult than an ordinary

puzzle. See Figure 3.3c.

Last but not least, modern sequencing machines are not perfect, and the reads they

generate often contain errors; thus, reads which do not overlap in the genome may be

incorrectly interpreted as overlapping (see Figure 3.3d).

With the pitfalls of DNA sequencing established, we next must introduce a rigorous

mathematical framework in order to attack fragment assembly.

2 The mathematics of DNA sequencing

2.1 Historical motivation
Before we jump headlong into mathematics, let us take two historical detours in order

to provide our mathematical discussion with some necessary context. We begin in the

eighteenth century and the Prussian city of Königsberg.1 Königsberg was formed of

opposing banks of the Pregel River, as well as two river islands; joining these four parts

of the city were seven bridges (see Figure 3.4a). Now, Königsberg’s residents enjoyed

taking walks, and they were curious if they could stroll through the city, cross each of

the seven bridges exactly once, and return back to their starting point. Their quandary

became known as the “Königsberg Bridge Problem,” and it was solved once and for

all in 1735 by the great Swiss mathematician Leonhard Euler2 (Figure 3.14a). Euler’s

result, which we discuss below, is profound because it applies not only to the bridges

of Königsberg, but in fact to any possible network of bridges.

1 Present-day Kaliningrad, Russia.
2 Pronounced “oiler.”
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(a)

(b)

Figure 3.4 (a) Map of old Königsberg, adapted from Joachim Bering’s 1613 illustration. The
seven bridges have been highlighted to make them easier to see. (b) The “Königsberg Bridge
Graph,” formed by compressing each of four land areas to a vertex and representing each of
the seven bridges as an edge.

Our second historical detour takes place in Dublin, with the creation in 1857 of

the Icosian Game by the Irish mathematician William Hamilton (Figure 3.14b). This

“game,” which even by contemporary standards could not possibly have been very

enjoyable, consisted of a wooden board with 20 pegholes and some lines connecting

the holes, as well as 20 numbered pegs (see Figure 3.5a). The game’s objective was to
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(a)

(b)

Figure 3.5 (a) The Icosian Game, along with (b) the corresponding graph.

place the numbered pegs in the holes in such a way that Peg 1 would be connected by

a line on the board to Peg 2, which would in turn be connected by a line to Peg 3, and

so on, until finally Peg 20 would be connected by a line back to Peg 1. In other words,

if we follow the lines on the board from peg to peg in ascending order, we reach every

peg exactly once and then arrive back at our starting peg.
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2.2 Graphs
With these two historical asides complete, we are ready to define a “graph” simply as

a collection of “vertices” and a collection of “edges,” for which each edge pairs two

vertices. The abstractness of this definition may be initially offputting, so we quickly

clarify that we can always think about a graph as a network or even a map, in which

the vertices are cities and the edges are roads connecting the vertices.

The benefit of providing ourselves with such a general definition is that “graph

theory,” or the branch of mathematics concerned with the study of graphs, can be

applied to many different types of problems. Applications of graph theory certainly

include road and communications networks; however, graph theory also extends to

less obvious examples, such as understanding the spread of disease or modeling the

webpage connectivity of the internet.

In particular, graph theory applies to both our historical examples. In the Königsberg

Bridge Problem, we obtain a graph K by assigning each of the four sectors of the city

to a vertex and then connecting two given vertices (sectors) with one edge for every

bridge that connects the two sectors (see Figure 3.4b). As for the Icosian Game, we

obtain a graph I by representing each peghole by a vertex and then turning the lines that

connect pegholes into edges that connect the corresponding vertices (see Figure 3.5b).

2.3 Eulerian and Hamiltonian cycles
Now we will generalize our two historical problems to all graphs. So assume that we

are given any graph, which we call G, and consider an ant standing on a vertex of G.

Just as the residents of Königsberg walk between the different parts of the city via

bridges, the ant may walk along edges from vertex to vertex. If the ant returns to where

it started, the result of its walk is a “cycle” of G. We will ask two questions about the

cycles of G:

1 Does there exist a cycle of G in which the ant walks along each edge exactly once?

2 Does there exist a cycle of G in which the ant travels to every vertex exactly once?

Fittingly, Question 1 is called the Eulerian Cycle Problem (ECP): note that solving the

ECP when our graph is K corresponds to solving the Königsberg Bridge Problem.3

We therefore define an “Eulerian cycle” in a graph G as a cycle of G which traverses

every edge in G once and only once.

The second question is called the Hamiltonian Cycle Problem (HCP), because when

the underlying graph is I , we can solve the HCP by “winning” Hamilton’s Icosian

3 We call your attention to what we mean by “solving” an ECP: because a solution corresponds to a “Yes” or
“No” answer to Question 1, the ECP is considered solved when we have provided either an Eulerian cycle in
the graph, or definitive proof that no such cycle exists.
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Figure 3.6 A Hamiltonian cycle in the graph I, which provides a solution to Hamilton’s Icosian
Game.

game (see Figure 3.6). Naturally then, a “Hamiltonian cycle” in a graph G is a cycle

of G which travels to each vertex once and only once.

Finally, we define a “connected” graph as one in which an ant standing on any vertex

can reach any other vertex by walking through the graph. For our purposes, it only

makes sense to study the ECP and HCP for connected graphs. This is because a graph

that is not connected automatically contains neither an Eulerian nor a Hamiltonian

cycle, in which case the ECP and HCP are both trivial questions. Therefore, every

graph in this chapter will be assumed to be connected.

2.4 Euler’s Theorem
The decision to extend our historical problems to questions about graphs in general

may be confusing, but this decision turns out to be key. While the ECP and HCP are

superficially very similar, computer scientists have discovered that the two problems

have a fundamentally different algorithmic fate: the ECP can be solved quickly even

for huge graphs, while an efficient algorithm for solving the HCP for large graphs

remains unknown and may not even exist.

First, we will discuss the ECP. Recall that when we introduced the Königsberg

Bridge Problem, we mentioned that Euler’s solution could be extended to any possible

collection of bridges. What we meant by this was that Euler’s solution actually provided

a simple condition to solve the ECP for any graph.

Before stating Euler’s result, we first need a definition. For a vertex v in a graph G,

define the degree of v to be the number of edges connecting v to other vertices. For

example, for the Königsberg graph K in Figure 3.4b, the top, bottom, and right vertices

all have degree 3, while the left vertex (representing the main island of Königsberg)

has degree 5. In particular, observe that since a vertex v in K represents a sector of the
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city, the degree of v is equal to the number of bridges connecting that sector to other

parts of the city.

Theorem (Euler’s Theorem I). An equivalent condition to a graph G having an Eulerian

cycle is that the degree of every vertex of G is even.

We call your attention to what two conditions being “equivalent” really means. In a

sense, it means that if one is true, then the other is necessarily true as well (and vice

versa). In the case of Euler’s Theorem, the equivalence of the degree condition and

the cycle condition is profound because it implies that for a given graph G, we can

determine if G has an Eulerian cycle without ever having to draw any cycles. Instead,

we simply need to check the degree of every vertex, a relatively simple computational

task (even for a large graph).

Let us notice that Euler’s Theorem immediately solves the Königsberg Bridge Prob-

lem. We have seen above that it is not the case that every vertex of K has even degree.

Therefore, K does not contain an Eulerian cycle, and so we conclude that the walk for

which the citizens of Königsberg had yearned does not exist.

Since the eighteenth century, much has changed in the layout of Königsberg, and it

just so happens that the same graph drawn today for the present-day city of Kaliningrad

still does not contain an Eulerian cycle (see Figure 3.7); however, this graph does

contain an Eulerian path, which means that a denizen of Kaliningrad can cross every

bridge exactly once, but cannot do so and return to where he started. Thus, the citizens

of Kaliningrad finally achieved at least a small part of the goal set by the citizens

of Königsberg. Yet it is also worth noting that strolling around Kaliningrad is not as

pleasant as it would have been in 1735, since the beautiful old Königsberg was ravaged

by the combination of Allied bombing in 1944 and dreadful Soviet architecture in the

years following World War II.

2.5 Euler’s Theorem for directed graphs
We need a slightly reworked statement of Euler’s Theorem in order to handle the

impending application of graph theory to fragment assembly. So first assume that

we instead have a “directed graph,” which is simply a graph in which all edges are

provided with an orientation, so that an edge connecting v to w is not the same as an

edge connecting w to v. We might like to think of a directed graph as a network in

which all the edges are “one-way streets,” in which case our original undirected graph

is a network in which all the edges are “two-way streets.” Accordingly, an Eulerian

cycle in a directed graph G is simply an Eulerian cycle which always travels down the

streets in the correct direction. A Hamiltonian cycle in G is defined analogously. See

Figure 3.8.
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(a)

(b)

Figure 3.7 (a) Satellite map of present-day Kaliningrad, with its bridges highlighted. (b) The
graph for “Kaliningrad Bridge Problem.” Here is a challenge question: where could the city
council of Kaliningrad construct new bridges so that the resulting graph will contain an
Eulerian cycle?
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Figure 3.8 (a) A basic example of a directed graph. The arrows provide the orientations of the
edges, so that we can see the directions of the “one-way streets.” (b) An illustration of an
Eulerian cycle in the directed graph. The edges of the graph are numbered to indicate their
order in the cycle. (c) An illustration of a Hamiltonian cycle (red edges) in the directed graph.

For any vertex v in a directed graph G, we define the “indegree” of v as the number

of edges leading into v and the “outdegree” of v as the number of edges leading out

from v. We are now ready to state the application of Euler’s result to directed graphs.

Theorem (Euler’s Theorem II). An equivalent condition to a directed graph G having

an Eulerian cycle is that for every vertex v in G, the indegree and outdegree of v are

equal.

A proof of Euler’s Theorem is provided at the end of the chapter, as well as a

discussion of how we can find an Eulerian cycle “quickly” in the parlance of computers.

The key point is that we do not have to test every possible cycle in a directed graph
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G in order to determine whether G contains an Eulerian cycle. We need only find the

indegree and outdegree of each vertex. If for each vertex, the indegree and outdegree

match, then finding an Eulerian cycle will be easy; on the other hand, if there is any

vertex for which the indegree and outdegree do not match, then we know that finding

an Eulerian cycle is impossible.

2.6 Tractable vs. intractable problems
Inspired by Euler’s Theorem, we should wonder whether there exists such a simple

result governing a quick solution of the HCP. Yet although it is easy to win the Icosian

Game, a solution to the HCP for an arbitrary graph has remained hidden.

The key challenge is that while we are guided by Euler’s Theorem in solving the

ECP, an analogous simple condition for the HCP remains unknown. Of course, you

could always employ the method of “brute force” to solve the HCP, in which you have a

computer explore all walks through the graph and report back if it finds a Hamiltonian

cycle. This method is simple enough to understand, yet think about a huge graph that

does not contain a Hamiltonian cycle. For this graph, the computer would have to

test every walk through the graph before reporting back that no Hamiltonian cycle

exists. The cataclysmic problem with this method is that for the average graph on just

a thousand vertices, there are more walks through the graph than there are atoms in

the universe!

The HCP was one of the first algorithmic problems that eluded all attempts to solve

it by some of the world’s most brilliant researchers. After years of fruitless effort,

computer scientists began to wonder whether the HCP is intractable, or in other words

that their failure to find a quick algorithm was not attributable to a lack of cleverness,

but rather because an efficient algorithm for solving the HCP simply does not exist.

Moreover, in the 1970s, computer scientists discovered thousands more algorithmic

problems with the same fate as the HCP: while they are superficially simple, no one

has been able to find efficient algorithms for solving them. A large subset of these

problems, along with the HCP, are now collectively known as “NP-complete.”

What has only exacerbated the frustration caused by the failure to find a simplifying

condition for the HCP is that while all the NP-complete problems are different, they

turn out to be equivalent to each other: if you find a fast algorithm for one of them,

you will be able to automatically find a fast algorithm for all of them! The problem of

efficiently solving NP-complete problems (or finally proving that they are intractable)

is so fundamental to both computer science and mathematics that it was named on the

list of “Millennium Problems” by the Clay Mathematics Institute in the year 2000: find

an efficient algorithm for any NP-complete problem, or show that any NP-complete
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problem is in fact intractable, and this institute will award you a prize of one million

dollars.

Henceforth, we will simply think of the ECP as “easy” and the HCP as “difficult.”

Keep this distinction between the two problems in mind, as it will shortly become

critical.

3 From Euler and Hamilton to genome assembly

3.1 Genome assembly as a Hamiltonian cycle problem
Equipped with all the mathematics that we need, we return to fragment assembly.

Having generated all our reads, we will henceforth make three simplifying assumptions

about the problem at hand in order to streamline our work:

1 The genome we are reconstructing is cyclic.

2 Every read has the same length l (a string of l nucleotides is called an “l-mer”).

3 All possible substrings of length l occurring in our genome have been generated as

reads.

4 The reads have been generated without any errors.

It turns out that we can relax each of these assumptions, but the resulting solution to

fragment assembly winds up being far more technical than what is suitable for this

text.

In the early days of DNA sequencing, the following idea for fragment assembly

was proposed. Construct a graph H by forming a vertex for every read (l-mer); we

connect l-mer R1 to l-mer R2 by a directed edge if the string formed by the final l − 1

characters of R1 (called the suffix of R1) matches the string formed by the first l − 1

characters of R2 (called the prefix of R2). For instance, in the case l = 5, we would

connect GGCAT to GCATC by a directed edge, but not vice versa. An example of such

a graph H is provided in Figure 3.9a.

Now, consider a cycle in H . It will begin with an l-mer R1, and then proceed along

a directed edge to a different l-mer R2; let us think of walking along this edge as

beginning with R1 and tacking on the lone non-overlapping character from R2 in order

to form a “superstring” S of length l + 1. To continue our above example, if we walk

from GGCAT to GCATC, then our superstring S will be GGCATC. Observe that the

first l characters of S will be R1, and the final l characters of S will be R2. At each

new vertex that we reach, we append one new character to S and notice that the final l

characters of our superstring will represent the read at the present vertex. At the end of

the cycle, our (cyclic) superstring S will therefore contain every l-mer that we reached
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ATG CGT GGC AAT GTG TGG TGC CAA GCA GCG

ATG CGT GGC AAT GTG TGG TGC CAA GCA GCG

(a)

(b)

Figure 3.9 (a) The graph H for the set of 3-mers ATG, CGT, GGC, AAT, GTG, TGG, TGC, CAA,
GCA, and GCG. (b) A Hamiltonian cycle in H . What is the cyclic “superstring” DNA sequence
corresponding to this Hamiltonian cycle?

along the way. Extending this reasoning, a Hamiltonian cycle in H , which travels to

every vertex in H , must correspond to a superstring of nucleotides which contains

every one of our l-mers. Furthermore, every substring of length l in S will correspond

to an l-mer, so S is as short as possible and therefore provides us with a candidate

DNA sequence! See Figure 3.9b.

The problem with this method is that although it is elegant, it nevertheless rests upon

solving the HCP, so that it is impractical unless our graph H is small. Therefore, this

method is unsuitable for the graph obtained from a genome, which may have billions

of vertices.

3.2 Fragment assembly as an Eulerian cycle problem
Yet all is not lost. Instead of assigning each read to a vertex, let us make the admittedly

counterintuitive decision to assign each read to an edge. To this end, consider all

prefixes and suffixes of all reads. Note that different reads may share suffixes and
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AT TG

GT

GC

CG

CA

GG

AA

CGT

GCG
GTG

TGG GGC

GCATGCATG

AA T CAA

Figure 3.10 The graph E for the same set of 3-mers as in Figure 3.9. Can you find an Eulerian
cycle in E ? What is the “superstring” DNA sequence corresponding to your Eulerian cycle?

prefixes; for example, reads CAGC and CAGT of length 4 share the prefix CAG. We

construct a graph E with each distinct prefix or suffix represented by a vertex; connect

an (l − 1)-mer A to an (l − 1)-mer B via a directed edge if there exists a read whose

prefix is A and whose suffix is B. See Figure 3.10 for an example using the same set

of reads from Figure 3.9.

Here, then, is the critical question: what does a cycle in E represent? Once again,

imagine that you are an ant starting at some vertex of E and that you walk along a

directed edge to another vertex. As with H , the result is the creation of a superstring

S by tacking on the non-overlapping characters from the second vertex to those of

the first. However, in this case S is just the read representing the edge connecting the

two vertices. Note that in Figure 3.10, we have labeled each edge with the appropriate

3-mer.

This process repeats itself as the ant walks through E ; with each new edge, we

append one additional nucleotide to the superstring S, but we also gain one additional

read. Therefore, an Eulerian cycle in E will induce a (cyclic) superstring S that contains

all our reads with maximum overlap, and so S is also a candidate DNA sequence. Yet in

contrast to our above graph H , we have no computational troubles: by Euler’s Theorem,

the ECP is easy to solve. Hence we have reduced fragment assembly to an easily solved

computational problem!

Nevertheless, the reduction of fragment assembly to solving the ECP on our graph

E carries one vital concern: how do we know from the start that E even contains an

Eulerian cycle? After all, E was constructed with no thought as to whether it might
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Figure 3.11 The minimal superstring problem. Here we show the circular superstring
00011101 along with illustrations of the location of the 3-digit binary numbers 000 and 110.
Note that we can locate all 3-digit binary numbers in the superstring with no repeats, so
00011101 is as short as possible.

have an Eulerian cycle; if it does not, then the construction of E was simply nonsense,

and the process of creating a superstring by concatenating nucleotides as we progress

through E will not result in a candidate DNA sequence. In order to resolve this potential

quagmire, we will tell a third and final mathematical tale.

3.3 De Bruijn graphs
In 1946, the Dutch mathematician Nicolaas de Bruijn4 (see Figure 3.14c) was interested

in the problem of designing a circular superstring of minimal length that contains all

possible l-digit binary numbers as substrings. For example, the circular string 00011101

contains all 3-digit binary numbers: 000, 001, 010, 011, 100, 101, 110, and 111. It is

easy to see that 00011101 is the shortest such superstring, because it does not contain

any “extra” digits, meaning that each 3-digit substring of 00011101 is the unique

occurrence of one of the 3-digit binary numbers listed above. See Figure 3.11.

De Bruijn analyzed a specific class of graphs, defined as follows. Consider an

alphabet of n characters, as well as some fixed number l. Form all nl−1 possible “words”

of length l − 1, where a word is just a string of l − 1 letters from our alphabet.5 De

Bruijn constructed a graph B(n, l) (now known as the de Bruijn graph6) whose vertices

4 In contrast to Euler, the anglophone will find the pronunciation of “de Bruijn” very difficult: it is similar to
“brine,” except with a slight ‘r’ sound between the ‘i’ and the ‘n.’

5 There are nl−1 such words because there are n choices for the first letter, n choices for the second letter, and so
on. Since there are l − 1 letters to choose, we wind up with nl−1 total possibilities.

6 This nomenclature is a bit cruel to the British mathematician I. J. Good, who independently discovered de
Bruijn graphs.
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0111

11101000

0001

Figure 3.12 The de Bruijn graph B (2, 4), where our 2-character “alphabet” is composed of
just the digits 0 and 1. Observe that by Euler’s Theorem, this graph must have an Eulerian
cycle; we will find such a cycle for this graph in Figure 3.19.

are all nl−1 words of length l − 1; a directed edge connects word w1 to word w2 if there

exists an l-letter word W whose prefix is w1 and whose suffix is w2. See Figure 3.12.

The crucial property shared by all de Bruijn graphs is that every one of them will

always contain an Eulerian cycle. For example, in Figure 3.12 we can see that there

are two edges entering every vertex and two edges leaving every vertex of B(2, 4),

implying that it has an Eulerian cycle. To see why the same is true for any de Bruijn

graph B(n, l), consider a vertex w corresponding to a word of length l − 1. There exist

n words of length l whose prefix is w (each such word is obtained by adding one of n

letters to the end of w) and thus the outdegree of each vertex in B(n, l) is n. Similarly,

there exist n words of length l whose suffix is w (each such word is obtained by adding

one of n letters to the beginning of w) and thus the indegree of each vertex in B(n, l)

is also n. Hence every vertex of B(n, l) has indegree and outdegree both equal to n,

and so Euler’s Theorem implies that B(n, l) must have an Eulerian cycle.

The biological connection arises when we realize that our graph E above will be

contained in the de Bruijn graph B(4, l), because whereas the vertices of E are all

(l − 1)-mers occurring as prefixes or suffixes of our reads, the vertices of B(4, l) are
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Figure 3.13 This more general version of the graph from Figure 3.10 allows for the case that
the same read occurs in more than one location in the genome. The good news is that this
generalization does not make the problem any more difficult to solve: an Eulerian cycle in this
graph will still correspond to a candidate DNA sequence.

all possible (l − 1)-mers. Furthermore, it can be demonstrated that E itself has an

Eulerian cycle!

3.4 Read multiplicities and further complications
Imagine for a moment that our genome is ATGCATGC. Then we will obtain four reads

of length 3: ATG, TGC, GCA, and CAT; however, this might lead us to reconstruct the

genome as ATGC. The problem is that each of these reads actually occurs twice in the

original genome. Therefore, we will need to adjust genome reconstruction so that we

not only find all l-mers occurring as reads, but we also find how many times each such

l-mer occurs in the genome, called its “l-mer multiplicity.” The good news is that we

can still handle fragment assembly in the case l-mer multiplicities are known.

We simply use the same graph E , except that if the multiplicity of an l-mer is k,

we will connect its prefix to its suffix via k edges (instead of just one). Continuing our

ongoing example from Figure 3.10, if during read generation we discover that each of

the four 3-mers TGC, GCG, CGT, and GTG has multiplicity 2, and that each of the

six 3-mers ATG, TGG, GGC, GCA, CAA, and AAT has multiplicity 1, we create the

graph shown in Figure 3.13. In general, it is easy to see that the graph resulting from

adding multiplicity edges is Eulerian, as both the indegree and outdegree of a vertex
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(a) (b) (c)

Figure 3.14 The three mathematicians. (a) Leonhard Euler. (b) William Hamilton.
(c) Nicolaas de Bruijn.

(represented by an (l − 1)-mer) equals the number of times this (l − 1)-mer appears in

the genome.

In practice, information about the exact multiplicities of (l − 1)-mers in the genome

may be difficult to obtain, even with modern sequencing technologies. However, com-

puter scientists have recently found a way to reconstruct the genome even when this

information is unavailable. Furthermore, DNA sequencing machines are prone to

errors, our reads will have varying lengths, and so on. However, with every variation

to fragment assembly, it has proven fruitful to apply some cousin of de Bruijn graphs

in order to transform a question involving Hamiltonian cycles into a different question

about Eulerian cycles.

4 A short history of read generation

4.1 The tale of three biologists: DNA chips
While Euler, Hamilton, and de Bruijn could not possibly meet each other, their math-

ematical fates got intricately criss-crossed. In 1988, three other Europeans would find

their fates intertwined (Figure 3.15). Radoje Drmanac (Serbia), Andrey Mirzabekov

(Russia), and Edwin Southern (UK) simultaneously and independently developed the

futuristic and at the time completely implausible method of DNA chips as a proposal for

read generation. None of these three biologists knew of the work of Euler, Hamilton,

and de Bruijn; none could have possibly imagined that the implications of his own



56 Part I Genomes

(a) (b) (c)

FPO

Figure 3.15 The three biologists. (a) Radoje Drmanac. (b) Andrey Mirzabekov.
(c) Edwin Southern.

experimental research would eventually bring him face to face with these giants of

mathematics.

In 1977 Fred Sanger and colleagues sequenced the first virus, the tiny 5,375

nucleotide long bacteriophage φX174. However, while biologists in the late 1980s

were routinely sequencing viruses containing hundreds of thousands of nucleotides,

the idea of sequencing bacterial (let alone human) genomes seemed preposterous,

both experimentally and computationally. Drmanac, Mirzabekov, and Southern real-

ized that one main problem with the original DNA sequencing technology developed

in the 1970s is the fact that it is not cost-effective for larger genomes. Indeed, gen-

erating a single read in the late 1980s cost more than a dollar, and thus sequencing a

mammalian genome would have been a billion-dollar enterprise.7 Due to such a high

cost, it was infeasible to generate all l-mers from a genome, one of our conditions

for the successful application of the Eulerian approach. DNA chips were therefore

invented with the goal of cheaply generating all l-mers from a genome, albeit with

a smaller read length l than the original DNA sequencing technology. For example,

whereas traditional sequencing techniques generated reads containing approximately

500 nucleotides, the inventors of DNA arrays aimed at producing reads with around

15 nucleotides.

DNA chips work as follows. One first synthesizes all 4l possible l-mers (i.e. all DNA

fragments of length l) and attaches them to a DNA array, which is a grid on which

each l-mer is assigned a unique location. We next take an (unknown) DNA fragment,

7 Even in 2000, when the cost of read generation reduced substantially, sequencing the human genome still cost
a few hundred million dollars.
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Figure 3.16 A schematic of the DNA array containing all possible 3-mers. Ten fluorescently
labeled 3-mers represent complements of the 10 3-mers from Figures 3.9 and 3.10. In order to
obtain our reads from this array, we simply take the complements of the highlighted 3-mers.
For example, CAC is highlighted, which means that GTG (the complement of CAC) is one of our
reads. Note that this DNA array provides no information regarding l-mer multiplicities.

fluorescently label it, and apply a solution containing this fluorescently labeled DNA to

the DNA array. The upshot is that the nucleotides in the DNA fragment will hybridize

(bond) to their complements on the array (A will bond to T, and C to G). All we

need to do is use spectroscopy to analyze which sites on the array emit the greatest

fluorescence; the complement of the l-mer corresponding to such a site on the array

must therefore be one of our reads. See Figure 3.16 for an illustration of the DNA array

for our recurring set of reads.

At first, almost no one believed that the idea of DNA arrays would work, because

both the biochemical problem of synthesizing millions of short DNA fragments and the

mathematical problem of sequence reconstruction appeared too complicated. In 1988,

Science magazine wrote that given the amount of work required to synthesize a DNA

array, “using DNA arrays for sequencing would simply be substituting one horrendous

task for another.” It turned out that Science was wrong: in the mid 1990s, a number of

startup companies perfected technologies for designing large DNA arrays. However,
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DNA arrays ultimately failed to realize the dream that motivated their inventors. Arrays

are incapable of sequencing DNA, because the fidelity of DNA hybridization with the

array is too low and because the value of l is too small.

Yet the failure of DNA arrays was a spectacular one: while the original goal (DNA

sequencing) was out of reach for the moment, two new unexpected applications of

DNA arrays emerged. Today, arrays are used to measure gene expression, as well as

to analyze genetic variations. These new applications transformed DNA arrays into a

multi-billion dollar industry that included Hyseq (founded by Radoje Drmanac) and

Oxford Gene Technology (founded by Sir Edwin Southern).

4.2 Recent revolution in DNA sequencing
After founding Hyseq, Radoje Drmanac did not abandon his dream of inventing

an alternative DNA sequencing technology. In 2005 he founded Complete Genomics,

which recently developed the technology to generate (nearly) all l-mers from a genome,

thus at last enabling the method of Eulerian assembly. While his nanoball arrays

technology is quite different from the DNA chip technology he proposed in 1988,

one can still recognize the intellectual legacy of DNA chips in nanoball arrays, a

testament that good ideas do not die even if they fail. Moreover, a number of other

companies, including Illumina and Life Technologies, are competing with Complete

Genomics by using their own technologies to generate (nearly) all l-mers from a

genome. While DNA arrays failed to generate accurate reads even 15 nucleotides long,

the next generation sequencing technologies generate reads of length 25 nucleotides

and longer (and producing hundreds of millions such reads in a single experiment).

These developments in next-generation sequencing technologies in the last five years

have revolutionized genomics, and biologists are presently preparing to assemble the

genomes of all the mammals on Earth (Figure 3.17) ... while still relying on the grand

idea that Leonhard Euler developed in 1735.

5 Proof of Euler’s Theorem

We now will prove Euler’s Theorem. First, let us restate his result for the case of

undirected graphs, which we may recall are graphs for which the edges are “two-way

streets.”

Theorem (Euler’s Theorem I). An equivalent condition to a graph G having an Eulerian

cycle is that the degree of every vertex of G is even.
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Figure 3.17 At the moment, only nine mammals have had their genomes sequenced: human,
mouse, rat, dog, chimpanzee, macaque, opossum, horse, and cow. This is all about to change.

We shall only prove the second version of Euler’s Theorem for directed graphs (in

which the edges are “one-way streets”), which is ultimately more relevant to the themes

of this chapter. We urge you to read through the proof we provide carefully, and then

see if you can prove Euler’s Theorem I for yourself. Do not be terrified. The overall

structure of the two proofs is identical, except for a few details. Simply follow the

proof of Euler’s Theorem II and fit in the appropriate details for undirected graphs.

Here, then, is the restatement of Euler’s Theorem for directed graphs.

Theorem (Euler’s Theorem II). An equivalent condition to a directed graph G having an

Eulerian cycle is that for every vertex v in G, the indegree and outdegree of v are

equal.

Recall that two conditions being “equivalent” means that if one is true, then the

other must be true. In this specific instance, our equivalent conditions are as follows

for a given directed graph G:

1 G has an Eulerian cycle.

2 Each vertex of G has equal indegree and outdegree.

So in order to prove that these two conditions are equivalent, we simply need to

demonstrate two statements. First, we need to show that if (1) is true for a directed

graph G, then so is (2). Second, we must show that if (2) is true for a directed graph

G, then so is (1). If these two statements hold, then there is no way that we can have a
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directed graph for which condition (1) is true and condition (2) is false, or vice versa.

In other words, our two conditions above will be equivalent.

Proof First we will show that if condition (1) is true, then so is condition (2). So

assume that we are given a directed graph G which contains an Eulerian cycle; our

aim is to show that each vertex of G has equal indegree and outdegree. Every time we

enter a vertex in the Eulerian cycle of G, we leave it via a different edge. If a vertex

v is used k times throughout the course of the cycle, then we enter v via a total of k

edges and leave v via a total of k edges. All 2k edges are distinct, because since our

cycle is Eulerian, no edge can be used more than once. Furthermore, these 2k edges

constitute all edges touching this vertex, since an Eulerian cycle uses every edge in

G. Therefore the indegree and outdegree of v are both equal to k. We can iterate this

argument on every vertex in G to obtain that every vertex in G has equal indegree and

outdegree, as needed.

Conversely, we need to show that if condition (2) is true, then so is condition (1).

So assume that we are given a directed graph G for which each vertex has indegree

equal to its outdegree. We will actually form an Eulerian cycle in G by the following

procedure. Choose any vertex v in G, and choose any edge leaving v. Travel down

this edge to the next vertex. Continue this process of choosing any unused edge to

walk down, creating what is called a “random walk,” while making sure only that we

never use the same edge twice. Eventually, we will reach our original vertex v, creating

a cycle which we call C1. We should be suspicious of why a random walk in G is

guaranteed to produce a cycle; this fact is ensured by the assumed condition that every

vertex has equal indegree and outdegree, so that every time we arrive at a vertex, we

must be able to find an unused edge leaving it (i.e. we cannot get “stuck” along our

walk).

Now, once we have formed our cycle C1, there are two possibilities for it. Either

C1 is an Eulerian cycle, in which case we are finished, or C1 is not Eulerian. In the

latter case, remove C1 from G to form a new graph H . Because every vertex of C1

(a cycle) must have indegree equal to its outdegree, condition (2) must also hold for

every vertex in H . Since G is connected, we are guaranteed to have some vertex w in

H that contains edges in both H and C1. So since condition (2) holds for H , we can

start at w and form an arbitrary cycle C2 in H via a random walk in H .

We now have two cycles, C1 and C2, which do not share any edges but which both

pass through w. We can therefore consolidate C1 and C2 to form a single “supercycle,”

which we call C . See Figure 3.18 for a brief illustration of how we form C .

In turn, we test if C is Eulerian, and if not we can iterate the above procedure

indefinitely. If at any step our supercycle C becomes an Eulerian cycle, then we are
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Figure 3.18 Cycle consolidation. If we have two cycles passing through the same vertex w,
then we can combine them into a single cycle simply by changing the order in which we
choose edges leaving w.

finished. The only concern is that C might never become Eulerian. However, this is

impossible: there are only finitely many edges in the original graph G, so that since we

remove some edges at each step, eventually we must reach a step at which we run out

of edges. When we consolidate cycles at this step, our supercycle will use every edge

in G without using any edges more than once, which is precisely the definition of an

Eulerian cycle in G. Therefore G has an Eulerian cycle, which is what we set out to

show.

The brilliant facet of this proof (as well as the proof of Euler’s Theorem I) is that it

serves as an example of what mathematicians call a “constructive proof,” or a proof that

not only proves the desired result, but also delivers us with a very precise method for

actually constructing what we need, which in this case is an Eulerian cycle. Therefore,

if we are given a graph and asked to find an Eulerian cycle in it, we can easily test to

see if each vertex has indegree equal to its outdegree (or if the degree of each vertex is

even, as in the case of undirected graphs). If this condition fails, then the graph contains

no Eulerian cycle; if it holds, we simply follow the idea outlined in the proof and form

an arbitrary sequence of cycles that do not share any edges, combining the cycles into

a single “supercycle” at each step, and iterating this process until an Eulerian cycle is

inevitably obtained.

Let us conclude by illustrating the power of our constructive proof. In Figure 3.19, we

apply Euler’s Theorem to find an Eulerian cycle in the de Bruijn graph from Figure 3.12.

Keep in mind that the same method will work for genome graphs containing billions

of edges. At last, we have definitively solved our giant puzzle!
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Figure 3.19 Obtaining an Eulerian cycle from a graph in which all vertices have the
appropriate degrees. Here, we find an Eulerian cycle in the directed graph B (2, 3) from
Figure 3.12. (a) We first find three arbitrary cycles in the graph at hand (here shaded with three
different colors). Once we have chosen the green cycle, we remove it from the graph and
choose the blue cycle, which we then remove from the graph and choose the red cycle. (b) We
next consolidate the green and blue cycles into a single cycle (black). The edge numberings
give the order of the edges if we start at vertex 000. Note that the red cycle is dashed to
indicate that it is not yet part of our supercycle. (c) Finally, we add the red cycle into our
supercycle, which is Eulerian. The edges are renumbered as needed. The resulting Eulerian
cycle spells the cyclic superstring 0000110010111101.
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DISCUSSION

We have met three mathematicians of three different centuries, Euler, Hamilton,
and de Bruijn, spread out across the European continent, each with his own
queries. We might be inclined to feel a sense of adventure at their work and how
it converged to this singular point in modern biology. Yet the first biologists who
worked on DNA sequencing had no idea of how graph theory could be applied to
this subject; what’s more, the first paper combining the trio’s mathematical ideas
into fragment assembly was published lifetimes after the deaths of Euler and
Hamilton, when de Bruijn was in his seventies. So perhaps we might think of
these three men not as adventurers, but instead as lonely wanderers. As is so
often the mathematician’s curse, each man passionately pursued questions in the
abstract mathematical world while having no idea where the answers might one
day lead without him in the real world.

NOTES
Euler’s solution of the Königsberg Bridge Problem was presented to the Imperial
Russian Academy of Sciences in St. Petersburg on August 26, 1735. Euler was the
most prolific writer of mathematics of all time: besides graph theory, he first
introduced the notation f (x) to represent a function, i for the square root of −1,
and π for the circular constant. Working very hard throughout his entire life, he
became blind. In 1735, he lost the use of his right eye. He kept working. In 1766,
he lost the use of his left eye and commented: “Now I will have fewer
distractions.” He kept working. Even after becoming completely blind, he
published hundreds of papers.

After Euler’s work on the Königsberg Bridge Problem, graph theory was
forgotten for over a hundred years, but was revived in the second half of the
nineteenth century by prominent mathematicians, among them William Hamilton.
Graph theory flourished in the twentieth century, when it became an area of
mainstream mathematical research.

DNA sequencing methods were invented independently and simultaneously in
1977 by Frederick Sanger and colleagues [1] as well as Walter Gilbert and
colleagues [2]. The Hamiltonian cycle approach to DNA sequencing was first
outlined in 1984 [3] and further developed by John Kececioglu and Eugene Myers
in 1995 [4]. Advances in DNA sequencing led to the sequencing of the entire
1800 kb H. influenzae bacterial genome in the mid 1990s. The human genome
was sequenced using the Hamiltonian approach in 2001.
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DNA arrays were proposed simultaneously and independently in 1988 by
Radoje Drmanac and colleagues in Yugoslavia [5], Andrey Mirzabekov and
colleagues in Russia [6], and Ed Southern in the UK [7]. The Eulerian approach to
DNA arrays was described in [8]. The Eulerian approach to DNA sequencing was
described in [9] and further developed in 2001 [10], when hardly anybody
believed it could be made practical.

At roughly the same time, Sydney Brenner and colleagues introduced the
Massively Parallel Signature Sequencing (MPSS) method [11], which brought in
the era of next generation sequencing with short reads. Throughout the last
decade, MPSS in addition to technologies developed by such companies as
Complete Genomics, Illumina, and Life Technologies revolutionized genomics.
Next-generation techniques produce rather short reads, which vary in length from
30 to 100 nucleotides and result in a challenging fragment assembly problem. To
address this challenge, a number of assembly tools have been developed [12–15],
all of which follow the Eulerian approach.

QUESTIONS

(1) Does the graph I representing the Icosian Game contain an Eulerian cycle? Why or why
not?

(2) Construct the de Bruijn Graph B(3, 3) and find an Eulerian cycle in it.
(3) Give three Eulerian cycles in the graph of Figure 3.13 along with their corresponding cyclic

superstrings.
(4) From the following set of reads of length 4, use the ideas of this chapter to provide a

(cyclic) candidate DNA sequence: AACG, TCGT, GATC (multiplicity 2), TATC, ATCG, CCCG,
ATCC (multiplicity 2), CGGA, CCCT, GTAT, CCGA, CTAA, TCCC (multiplicity 2), GGAT,
CCTA, TAAC, CGAT, CGTA, ACGG.

(5) Prove Euler’s Theorem I.
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CHAPTER FOUR

Dynamic programming: one
algorithmic key for many
biological locks

Mikhail Gelfand

Dynamic programming is an algorithm that allows one to find an optimal solution to many
important bioinformatics problems without explicit consideration of all possible solutions. This
chapter provides a description of the algorithm in the graph-theoretical language, and shows
how it is applied to such diverse areas as DNA and protein alignment, gene recognition, and
polymer physics.

1 Introduction

A major part of computational biology deals with the similarity of sequences, be

they DNA fragments or proteins. There are four aspects to this problem: defining

the measure of similarity, calculating this measure for given sequences, assessing

its statistical significance, and interpreting the results from the biological viewpoint.

Biologists are interested in the latter: similar sequences may have a common origin,

as well as similar structure and function. However, here we shall deal with a formal

problem: how to discover similarity.

Consider two sequences from a finite alphabet (e.g. 4 nucleotides or 20 amino acids)

written one under the other, possibly with gaps. This is called an alignment (Figure 4.1).
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gelfand          g---elfand           gelfand---

+ +           +--- ++---           +---+++---

    gandalf          gandalf---           g---andalf

(a) (b) (c)

Figure 4.1 Three (of many) alignments of two sequences. Plus denotes a match; dot, a
mismatch, minus, a gap. (a) Two matches, five mismatches, (b) three matches, one mismatch,
two gaps of size three (six indels, that is, one-nucleotide insertions/deletions), (c) four
matches, two gaps of size three (six indels).

We can calculate the number of matching symbols (nucleotides or amino acids), the

number of mismatches, and the number and size of gaps. If we assign a positive weight

(premium) to a match, and negative weights (penalties) to a mismatch and a gap of a

given size, we can calculate the total score as the sum of all weights. Depending on the

weights, different alignments will have the highest score. For instance, in Figure 4.1,

alignment (c) is clearly better than alignment (b), as it has the same number of gaps,

but no mismatches and more matches, whereas the choice between (c) and (a) depends

on the gap penalty: if gaps are assumed to be much worse than mismatches, (a) is

better than (c).

So, for a pair of sequences, we want to find the best alignment in terms of the

scoring function; that is, to introduce gaps so that the similarity between the sequences

is maximized. One way to do so is to consider all possible alignments, score each

one, and find the one with the maximal score. However, the number of possible

alignments is enormous: for two sequences of length N it is approximately proportional

to (1+√
2)2N+1√N , in mathematical notation, O((1 + √

2)2N+1√N ). This is a very

large number. For N = 1,000 it is about 10767 (for comparison, the number of the

elementary particles in the Universe is estimated as 1080). For a smaller N , say,

N = 100, this number is about 1076. This may look better, but assuming one operation

per alignment and a supercomputer doing 1012 operations per second, we shall need

1057 years to complete the construction. That does not look promising.

Another well-known problem is segmentation of a sequence into functionally or

statistically homogeneous regions. The most important variant of this problem is

gene recognition: given a DNA sequence, map its protein-coding and non-coding

regions. It was observed about 30 years ago that the statistical properties of coding and

non-coding regions are different. Indeed, amino acid frequencies in proteins are not

uniform, and codons corresponding to frequent amino acids such as alanine and lysine

are encountered more frequently than codons for tryptophan and histidine. Moreover,

synonymous codons encoding the same amino acid also are not used evenly (this is

related to the cellular concentration of corresponding tRNAs and other reasons). Hence,

the frequency of codons in protein-coding regions is not the same as the frequency of
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nucleotide triplets in non-coding regions. We can introduce a measure for the “coding

potential”: how similar the frequencies of nucleotide triplets in a DNA fragment are

to those expected in a coding region compared to a non-coding one. To do that, we

can assign a weight to each triplet, dependent on how frequently the triplet serves as a

codon compared to its background (non-coding) frequency.

In prokaryotes, gene recognition is relatively straightforward, at least from the

computational point of view. We simply calculate the coding potential of all open-

reading frames, and whenever two open-reading frames happen to overlap, select the

higher-scoring one. However, in eukaryotes the problem is complicated by the exon–

intron structure. Introns do not code for proteins and are spliced out from the transcript.

Splicing creates a mature mRNA consisting of ligated exons. Individual exons are too

short for reliable estimation of their coding potential. We can try to predict splice sites,

that is, boundaries between 5′-exons and 3′-introns (called donor sites) or 3′-introns

and 5′-exons (acceptor sites), but this cannot be done reliably: in order not to lose

any true sites, we have to use a weak rule that produces numerous false-positives. A

combined procedure works as follows: we start with site prediction and then consider

all possible exon–intron structures, calculating the statistical score for each. This score

is the sum of the total coding potential of exons and the non-coding potential of introns.

The latter term measures the similarity to statistical properties of non-coding regions.

Again, we run into a computational problem, since the number of possible exon–

intron structures is very large. Indeed, the number of candidate sites is roughly pro-

portional to the sequence length. Assuming that each site might be included into an

exon–intron structure, we find that the number of possible structures is exponential in

the sequence length. In fact, not all sets of sites yield legitimate structures (e.g. all odd

sites must be donor sites and all even sites must be acceptor sites), but this and other

corrections still retain the exponential dependence.

We see that in both cases direct scoring of all possible configurations (alignments

or exon–intron structures) is not feasible. But do we need to score all of them?

Consider the following toy example. Suppose we have two sets of positive integers

x1, ..., xm and y1, ..., yn , and we need to calculate the sum of all pair products

x1 · y1 + x1 · y2 + . . . + x1 · yn + x2 · y1 + x2 · y2 + . . . + x2 · yn + . . . + xm · y1

+ xm · y2 + . . . + xm · yn.

How many operations do we need? Easy: mn multiplications and mn – 1 additions. But

maybe we can do better? We simply rewrite our sum as

x1 · (y1 + y2+. . . + yn) + x2 · (y1 + y2+. . .+yn) + . . .+xm · (y1 + y2+. . . + yn)

= (x1 + x2 + . . . + xm) · (y1 + y2 + . . . + yn). (4.1)
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Now we need m + n − 2 additions and just one multiplication. I shall rewrite this

calculation using the standard mathematical notation:∑
i=1...m, j=1...n

xi · y j =
∑

i=1...m

xi ·
∑

j=1...n

y j . (4.2)

Q Quiz 1
How many multiplications do we need to calculate

x y1

1 · x y2

1 · . . . · x yn

1 · x y1

2 · x y2

2 · . . . · x yn

2 · . . . · x y1
m · x y2

m · . . . · x yn
m =

∏
i=1...m, j=1...n

x
y j

i

(4.3)

if we are (a) naı̈ve?, (b) sophisticated? (c) What if in addition to multiplication, we have

an operation “taking to the power”? (d) If we may perform not only multiplication, but

also addition?

Lesson Restructuring the order of calculations using properties of the data may

sharply decrease the number of operations.

So, why not try something similar with our problems? In order to do so we need a

mathematical object called a graph. We will develop an efficient algorithm for a rather

abstract problem on graphs, and then we will apply it to the biological problems of

alignment and gene recognition.

2 Graphs

A graph consists of two sets, a set of vertices (primary objects) and a set of arcs, which

are pairs of vertices (Figure 4.2). We will consider oriented graphs, so that each arc

an= (bn , en) has a start vertex bn and an end vertex en . We will require that the graph

contains neither multiple arcs with the same starts and ends (Figure 4.2d), nor loops,

that is, arcs whose start and end vertices coincide (Figure 4.2e).

A walk p of length N is an ordered set of N arcs p = (a1, ..., aN ) such that the end

vertex of arc an = (bn, en) coincides with the start vertex of arc an+1, en = bn+1, for

all n = 1, ..., N − 1. In a graph without loops and multiple arcs, each walk may also

be defined as an ordered set of vertices p = (v1, ..., vN+1) such that for each pair of

adjacent vertices vn, vn+1 there is an arc an = (vn, vn+1), n = 1, ..., N . A walk is a path

if no arc is passed twice. We will also use non-oriented paths obtained by disregarding

the direction of arcs.
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(e) (g) (h)(f)(a) (b) (c) (d)

Figure 4.2 (a, b) Graphs. (c) Graph with cycles. (d) Graph with double arcs. (e) Graph with a
loop. (f) Graph with two components. (g) Not a graph (hanging arc). (h) Non-oriented graph.

A graph is connected (or consists of one component) if there is a non-oriented path

between any two vertices, and we will consider only such graphs. A non-connected

graph is shown in Figure 4.2f . A path is called a cycle if the end vertex of the last arc

aN coincides with the start vertex of the first arc a1, eN = b1, and we will consider

only acyclic graphs that contain no cycles (compare an acyclic graph in Figure 4.2b

and a graph with cycles in Figure 4.2c).

Q Quiz 2
(a) Draw all acyclic connected oriented graphs with three vertices (up to vertex labels).

(b) How many oriented graphs will there be if we label vertices with symbols A, B,

and C?

A vertex is called a source if it is not an end vertex for any arc, and a sink if it

is not a start vertex for any arc. Unless specified otherwise, we shall assume that a

graph has a single source and a single sink and consider only paths starting at the

source and ending at the sink, but the algorithms presented below do not depend on

this assumption, and in any case we can always perform a technical trick of creating

a new source (or sink) and linking it with all initial sources (respectively, sinks), see

Figure 4.3. Finally, we shall assign each arc with a number called a weight. For a given

path, its path score is defined as the sum of the weights of its arcs.

Q Quiz 3
(a) Prove that in an acyclic graph there is at least one source and at least one sink.

(b) Draw sinks and sources in the graphs of Quiz 2.

3 Dynamic programming

Now we are ready to formulate our problem.

Problem 1 Given a weighted acyclic graph, find the highest scoring path.
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(a) (b)

Figure 4.3 (a) Graph with two sources and three sinks (red). (b) Graph with artificially added
single source and single sink (blue).

We do not want to enumerate all paths, since their number is very high even for

relatively simple graphs; in general, it is exponential in the number of arcs. However,

if we have two paths that have several common arcs at the beginning, we do not need

to calculate the score of this common subpath twice. Even more importantly, if two

subpaths P and Q end at the same vertex v, and the score of P is larger than the score

of Q, then for all pairs of paths P∗ and Q∗ that start with P and Q, respectively, and

coincide after v, the score of P∗ is higher than the score of Q∗. Hence, we do not need

to consider all paths, as it is sufficient to construct the highest-scoring subpath from

the source to each vertex, finishing at the sink.

For example, let’s do this for the graph shown in Figure 4.4. The entire procedure

is shown in Figure 4.5. We start at the source and process all arcs originating at it:

these are our initial subpaths. At each end vertex we collect the score of the best

(highest-scoring) already considered subpath ending at the vertex and mark the last arc

of this subpath. Then we select a vertex with all incoming arcs already processed (at

step 2 there is only one such vertex, marked by a star). Again, we process all outgoing

arcs. The process is repeated until we come to the sink. Note that we may come to a

situation in which there are several vertices with all incoming arcs processed (e.g. at

step 5): we select an arbitrary one.

Q Quiz 4
At what steps in Figure 4.5 do we have more than one vertex with all incoming arcs

processed?
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      (a)       (b)

2

4

1

2

3 4

1

1

6 5

25

86 5 2

23

3 1

Figure 4.4 Sample graph for construction of the highest scoring path. (a) The structure of the
graph, (b) the arc weights.

When all vertices have been processed and we arrive at the sink, we backtrack,

moving in the opposite direction, each time using the marked arc. Recall that the

marked arc is the last arc of the highest-scoring subpath. Hence, when we return to the

source, we shall have constructed the highest-scoring path from the source to the sink.

A formal algorithm is given in Figure 4.6.

How many operations do we need for this process? The limiting procedure

is processing vertices and adding arcs to paths, and we consider each arc only

once, hence the number of operations is linear in the number of arcs A: the run

time of the algorithm is O(A), meaning approximately proportional to A if A is

large.

Do we really need to check every arc? What if we simply start at the source

and select the highest-weighted arc at each step? This strategy is called the greedy

algorithm. Unfortunately, as shown in Figure 4.7, where it is applied to the same

graph, we cannot guarantee that we shall construct the highest scoring path by this

algorithm.
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Figure 4.5 Construction of the highest-scoring path. Star denotes the currently active vertex;
red vertices represent those for which construction of the highest-scoring subpath has been
completed; blue vertices are the ones for which construction of the subpath has started but not
yet completed. Blue arrows denote processed arcs. Red arrows, one for each vertex, denote the
last arc of the highest-scoring subpath coming to this vertex. Large green arrows denote the
highest-scoring path constructed at the last (backtracking) step. A number at a vertex denotes
the highest score of already considered subpaths ending at this vertex.
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Data types and definitions:

vertices: v, u, Source, Sink;

arcs: (v,u), a;

  start vertex of arc a: B(a);

  weight of arc (v,u): W(v,u);

  path: BestPath; // defined as a set of arcs

  the highest score of subpath ending at  v: S(v);

  the highest score of subpath ending at u and coming through (v,u): T(v,u);

  the last arc of the highest scoring subpath ending at u: L(u);

Initialize: for each vertex v: S(v) := minus_infinity.

Forward process: while There are unprocessed vertices:

  v := arbitrary unprocessed vertex with all incoming arcs processed;

  for each arc (v,u): // consider all arcs starting at v

    T(v,u) := S(v)+W(v,u);

    if T(v,u)>S(u) // subpath coming through v is better
                      than the current best subpath ending at u 

    then: // update the data for u

S(u) := T(v,u);

      L(u) := (v,u);

    endif;

(v,u) := processed_arc;

  endfor;

v := processed_vertex;

endwhile.

Backtracking:

  BestPath = empty_set; // initialize

  v := Sink; // go from the sink backwards by marked arcs

  until v=Source

Add L(v) to BestPath; // add the last arc of the best path
    ending at the current vertex

    v := B(L(v)); // go to the start vertex of this arc

enduntil.

Output BestPath.

Figure 4.6 Dynamic programming algorithm for construction of the highest-scoring path.



76 Part I Genomes

Q Quiz 5
(a) Construct the simplest possible graph in which the greedy algorithm yields the

highest-scoring path. (b) Construct a graph with three vertices in which the greedy

algorithm does not yield the highest-scoring path. (c) Construct a graph with three

vertices in which the greedy algorithm does yield the highest-scoring path. (d) Assign

new weights to the arcs of the graph from Figure 4.4a so that the greedy algorithm will

yield the highest-scoring path.

Q Quiz 6
Write an algorithm for construction of the path with the maximum number of arcs and

apply it to the graph from Figure 4.4. Hint: do not change the algorithm, set proper arc

weights.

Q Quiz 7
(a) Modify the maximum score algorithm so as to construct the path with the minimal

score and find this path for the graph from Figure 4.4. (b) Provide a greedy algorithm for

finding the path of minimal score in a graph, and apply it to the graph from Figure 4.4.

(c) For the graph in Figure 4.4, find the path with the minimal number of arcs.

Note One may think that the dynamic programming algorithm is applicable to all

path optimization problems. Unfortunately, this is not so. For example, it does not work

for the famous traveling salesman problem. Given a non-oriented graph with weighted

arcs, we need to construct the lowest-scoring path passing through all the vertices

(the salesman needs to visit all cities with travel time between the cities given by the

arc weights, while spending the least amount of time traveling). The condition that all

cities need to be visited in a single trip makes it an example of a so-called NP-complete

problem, for which no efficient algorithms are known. While it has not been formally

proven, most computer scientists believe that for all NP-complete problems the number

of operations required to provide an optimal solution is exponential in the problem

size.

Lesson The generic dynamic programming algorithm may be applied to different

problems. The common feature of these problems is that each one can be decomposed

into an ordered set of smaller subproblems, and to solve a more complex subproblem

one needs to know only the solutions of the simpler ones, but not the entire set of

possibilities.
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4 Alignment

Return now to the alignment problem.

Problem 2 We are given two symbol sequences (in biological applications, the

symbols usually being nucleotides or amino acids) of lengths M and N , and we want

to set a correspondence between these sequences so that some symbols are set in pairs,

matching or mismatching, whereas other symbols are ignored (deleted). The order of

corresponding symbols in the subsequences should coincide (we cannot align TG to

GT so that T corresponds to T and G corresponds to G simultaneously). The alignment

score is the sum of match premiums r per matching pair minus the sum of mismatch

penalties p per mismatching pair and deletion penalties q per ignored symbol. The

goal is to construct the highest-scoring alignment.

Note The underlying assumption making this formal problem biologically relevant

is that an alignment reflects the process of evolution: aligned symbols have a common

ancestor, whereas mismatches, insertions, and deletions reflect evolutionary events,

mutations that change nucleotides (and as a consequence, for protein-coding genes,

amino acids of the encoded protein), and insertion or removal of gene fragments.

Q Quiz 8
What are the scores of the alignments in Figure 4.1?

It turns out that the alignment problem elegantly reduces to the highest-scoring

path problem, for which, as we have already seen, there exists an efficient dynamic

programming algorithm. Indeed, consider a graph whose vertices correspond to pairs

of positions (Figure 4.7). Each pair may be of three types: match or mismatch (M · N

arcs), deletion in the first sequence (M · (N + 1) arcs), and deletion in the second

sequence ((M + 1) · N ) arcs. These arcs are assigned weights of r or (−p) for matches

and mismatches, respectively, and (−q) for deletions (Figure 4.8). There is a one-to-

one correspondence between paths from source to sink in the graph and possible

alignments (Figure 4.9). By construction, the path score equals the alignment score.

Hence, finding the highest-scoring alignment is equivalent to finding the highest-

scoring path. Application of the dynamic programming algorithm to the alignment

graph produces the highest-scoring alignment in O(MN) time.

We have just solved the so-called global alignment problem. There exist other types

of alignments. For example, if there are reasons to expect that the aligned sequences

may not be complete, we should not penalize hanging ends in any one sequence at

both sides. This is achieved by setting all penalties on the “sides” of the rectangular
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Figure 4.7 Graph for the alignment construction. Diagonal arcs correspond to symbol
pairings, with matches shown by red arrows; horizontal and vertical arcs correspond to
deletions in the horizontal and vertical sequence, respectively. Source and sink vertices are
shown by stars.
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Figure 4.8 Alignment graph of Figure 4.6, with arc weights. Matches (weight of match
premium is r ) are pink.
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Figure 4.9 Alignment graph of Figure 4.6 with three paths corresponding to the alignments
from Figure 4.1 shown by colored arrows. Red arrows: matches; blue arrows: mismatches
(diagonal) and deletions (horizontal and vertical).

alignment graph to 0 or, equivalently, removing these side arcs and introducing zero-

weight arcs from the source to all vertices at the left and upper sides and from all

vertices at the bottom and right side to the sink.

Q Quiz 9
Construct the hanging-ends alignment graphs for the pairs of sequences (a) “gelfand”

and “elf” and (b) “gelfand” and “angel”, and construct the optimal alignments.

The most important variant of the alignment is the local alignment, when both

sequences may have hanging ends at both sides, and the goal is to find a region with

maximal similarity. This is what one should look for, e.g. in distant proteins retaining

similarity only at a fraction of domains. Again, a simple tweak of the alignment graph

produces the desired result: we need to add zero-weight arcs from the source to all

vertices (not only side ones, as in the “hanging-ends” case) and from all vertices to the

sink.

Another direction of modification is playing with the weights. For example, it is

well known that some amino acids are similar by their physico-chemical properties

(e.g. aspartate and glutamate or leucine and valine), whereas others are rather different

(e.g. glycine and tryptophan or alanine and proline). This is also seen in evolutionary

analyses: when aligning homologous (having common origin) proteins, one often sees

aspartate–glutamate pairs, but rarely glycine–tryptophan pairs. Hence we should set
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different penalties to different mismatching pairs. This is done in a general way: we

use the matrix of amino acid match weights, and assign weights to the alignment graph

arcs equal to the weight of the corresponding pair. At that, our old premium-penalty

system has the matrix with premiums r on the main diagonal and penalties (–p) in all

off-diagonal cells.

One more modification is the use of so-called affine gap penalties. A gap of length g

is penalized not by qg, as above, but by c + dg, where the gap opening penalty c is rel-

atively large, whereas the gap extension penalty d is small. Again, this may be done by

a proper restructuring of the alignment graph. The underlying biological reason is that

from the analysis of natural sequences we know that a deletion or insertion of size g is

more likely than several independent deletions (respectively, insertions) of total size g.

Q Quiz 10
For the alignments of Figure 4.1, assuming match premium r = 10, what combinations

of mismatch and deletion penalties would yield optimal alignments (a), (b), and (c)?

Note The problem of selecting proper gap penalties is important. For random

sequences, dependent on the gap penalties, the length of the optimal local alignment

of two sequences of the same length may be linear in the sequence length (for gap

penalties that are small compared to match premiums) or logarithmic in the sequence

length (for prohibitively large gap penalties). In the limit of zero gap penalty, the

former case reduces to the maximum common subsequence problem, whereas in the

limit of infinitely large gap penalty, the latter case is the maximum common subword

problem. To select reasonable gap penalties for protein alignment, we should study

homologous proteins with known 3D structures: a good alignment is one that sets in

correspondence structurally equivalent amino acids. After training our parameters on

a set of “gold standard” structural alignments, we can apply them to proteins with

unknown structures.

Finally, we can apply the algorithm to the alignment of several sequences. For

example, if three sequences are aligned, instead of a graph with a square (2D) lattice,

we construct a graph with a cube (3D) lattice. The number of arcs, and hence the run

time, is now O(N 3), N being the length of all three sequences. Similarly, the run time

for K sequences of length N is O(N K ), becoming prohibitively large even for the

alignment of a few short sequences. Many heuristics have been suggested to construct

multiple alignments in reasonable time by reducing the problem to a series of pairwise

alignments. They do not guarantee that the constructed alignment will have the highest

score, but aim at producing biologically plausible alignments.

Lesson Weights matter. The same graph with differently assigned arc weights will

yield different types of alignment.
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5 Gene recognition

Another important problem is gene recognition, that is, decomposition of a sequence

into exons (protein-coding regions) and introns (non-coding regions). The definitions

in parentheses are somewhat inexact “bioinformatics” ones; for a biologically proper

definition, consult a molecular biology textbook.

Problem 3 Define a gene as a sequence fragment consisting of exons and introns.

The boundaries between them are donor sites (between exons and introns) and acceptor

sites (between introns and exons). Each exon and intron is assigned a weight, measuring

coding affinity (respectively, non-coding affinity) of its sequence. A gene’s score is the

sum of weights of constituent exons and introns. Our goal is, given a sequence and a

set of candidate donor and acceptor sites, to construct the highest-scoring exon–intron

structure for a gene.

There exist many programs for the identification of splice sites, but unfortunately,

all of them are very unreliable and produce numerous false candidates. Hence we need

to select the best exon–intron structure among a huge number of possibilities.

Again, we construct a graph. Its vertices correspond to candidate sites, and arcs

correspond to possible exons and introns (Figure 4.10a); we shall call it the exon–

intron graph. The exon arcs go from acceptor site vertices to donor site ones. The

intron arcs go from donor site vertices to acceptor site vertices.

There is a one-to-one correspondence between exon–intron structures and paths of

the exon–intron graph (Figure 4.10b). Hence, assigning each arc a weight equal to

the weight of the corresponding exon or intron, we reduce the problem of finding the

highest-scoring exon–intron structure to the problem of finding the highest-scoring

path, which we know we can find by dynamic programming.

As we already know, the number of operations is proportional to the number of arcs

in the graph. Assuming that candidate sites occur more or less uniformly along the

sequence, their number is O(L), where L is the sequence length. Since each pair of

donor and acceptor sites generates a candidate exon or intron, the number of arcs is

O(L2).

Note In this description we leave out cumbersome technical details such as keeping

the proper reading frame, the fact that protein-coding regions start and end at specific

codons, taking into account restrictions on the minimal exon and intron lengths, the

possibility that a sequence fragment may contain several genes, etc.

For long sequence fragments the quadratic run time may become prohibitively large.

However, do we need all these arcs? An exon may be a part of a larger exon, and it is
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actgagactgcagacggacgtacggcactgacgtataagccccacagtccttacgtctga

actgagactgcagACGGACGTACGGCACTGACgtataagCCCCACAGTCCTTACgtctga

(a)

(b)

Figure 4.10 (a) Exon–intron graph. Donor sites are shown by marked gt in the sequence and
blue vertices (bottom row) in the graph. Acceptor sites are shown by marked ag in the
sequence and black vertices (top row) in the graph. Exon arcs go from vertices at the top row
to the ones in the bottom row, intron arcs go from the bottom row to the top row. The source
and sink, corresponding to the beginning and end of the sequence, respectively, are
represented by yellow stars. (b) One possible decomposition of the sequence into exons and
introns and the corresponding path. Exons are shown by capitals.

reasonable to assume that the weight of the larger exon is a sum of the weight of the

smaller one and the weight of the remaining segment. It would look unnatural to define

the gene score by the sum of exon weights, while at the same time making exon weight

different from the sum of weights of constituent segments. Indeed, in most cases exon

weights are defined by additive measures of coding affinity. The same holds for introns.

If we restrict ourselves to additive weighing functions, we can construct a more

efficient representation. We shall call it the segment graph (Figure 4.11). Again, vertices

correspond to sites, but now each site corresponds to two vertices. Arcs are of two types:

arcs between vertices corresponding to the same site represent exon–intron boundaries

and are not assigned any weight, whereas arcs between vertices corresponding to

adjacent sites of the same type represent exon or intron segments. The key is that we

have only arcs between adjacent sites, hence, their number is linear to the number of

sites, and we have O(L) arcs. Using the same trick of avoiding multiple calculation

of the same value, we have sharply decreased the computational complexity of the

algorithm.
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actgagactgcagacggacgtacggcactgacgtataagccccacagtccttacgtctga

actgagactgcagACGGACGTACGGCACTGACgtataagCCCCACAGTCCTTACgtctgaactgagactgcagACGGACGTACGGCACTGACgtataagCCCCACAGTCCTTACgtctga

(a)

(b)

Figure 4.11 (a) Segment graph. Notation as in Figure 4.9. Exon fragments are in the bottom
row, while intron fragments are in the top row. Vertical arcs at sites are possible exon–intron
and intron–exon boundaries; note that the direction depends on the site type, see the text. (b)
The same decomposition of the sequence into exons and introns and the corresponding path.

Q Quiz 11
There are two paths in the segment graph that describe exon–intron structures not

represented in the exon–intron graph. What are they? What arcs need to be added to

the exon–intron graph to represent these structures?

Lesson Structure matters. The same problem may be represented by different graphs,

and the conceptually simplest representation is not necessarily the most efficient one.

6 Dynamic programming in a general situation.
Physics of polymers

Let’s return to our toy problem. Again, we have two sets of positive integers x1, ..., xm

and y1, ..., yn , but this time we want to calculate the product of all pair sums,∏
i=1...m, j=1...n (xi + y j ). Can we use the same trick that we did before? Unfortunately,

no. The reason for this is the properties of addition and multiplication: we have relied
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on the identity x · z + y · z = (x + y) · z, but now we need (x + z) · (y + z) = x · y

+ z, and this generally is not true.

Q Quiz 12
When is (x + z) · (y + z) =x · y + z?

In our graph problems we were using two operations: calculating the path score (as

the sum of the arc weights) and selecting the best path ending at a vertex (as the path

of the maximum weight). We used the fact that if the score of a path P is larger than

the score of a path Q, then for any arc a, the score of the path P with appended arc a,

denoted (P , a), is larger than the score of the path (Q, a). Hence, at each vertex it was

sufficient to retain the highest-scoring path ending at this vertex.

To write this condition more formally, let ⊗ be the operation of calculating the path

score S given arc weights W . We require that this operation is associative, so that

(x ⊗ y) ⊗ z = x ⊗ (y ⊗ z); this obviously holds in all considered cases. Hence we

may write simply a ⊗ b ⊗ c, without bothering about the order of operations, and thus

S(P) =⊗a∈P W (a) (this corresponds to
∑

a∈P W (a) when the path score is defined as

the sum of arc weights as above).

Let 
 be the set of all paths from the source to the sink. We now slightly change the

focus, and instead of constructing the best path, simply calculate its score, assuming

this to be the total graph score � = maxPε
 S(P). Denote the operation of combining

paths, which in all above paragraphs has been selecting the path of a higher score, by ⊕.

We require that this operation is associative, (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) = x ⊕ y ⊕ z,

and commutative, x ⊕ y = y ⊕ x .

In our new notation, � = ⊕P∈
 S(P) = ⊕P∈
 ⊗a∈P W (a). The crucial property

of path scores that has allowed for efficient computations, max (x + z, y + z) =max

(x, y) + z, is rewritten as the distribution law

(x ⊗ z) ⊕ (y ⊗ z) = (x ⊕ y) ⊗ z (4.4)

(technically speaking, since we have not required ⊗ to be commutative, we also need

(x ⊗ y) ⊕ (x ⊗ z) =x ⊗ (y ⊕ z)).

Why is this new notation useful? Because now we can consider an even more

general class of problems. To apply the standard dynamic programming algorithm for

finding the maximum path score in a graph, it is sufficient to check that operations are

commutative, associative, and satisfy the distribution law. The dynamic programming

algorithm in this new notation is given in Figure 4.12. A trivial observation is that if

⊕ is the operation of taking the minimum, we immediately obtain the minimal score

of a path from the source to the sink. A more interesting case is the following.
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Data types:

  vertices: v, u, Source, Sink;

  arcs: (v,u);

  weight of arc (v,u): W(v,u);

  the current score of vertex v: S(v);

Initialize: for each vertex v: S(v) := undefined;

Forward process: while There are unprocessed vertices:

  v := arbitrary unprocessed vertex with all incoming arcs processed;

  for each arc (v,u): // consider all arcs starting at v

    S(u) := S(u) ⊕ ( ⊗S(v)  W(v,u)); // update the score of v

(v,u) := processed_arc;

endfor;

  v := processed_vertex;

endwhile.

Output S(Sink).

Figure 4.12 General dynamic programming algorithm.

Problem 4 For a linear polymer chain of L + 1 monomers k = 0, ..., L , let each

monomer assume N states σ (k) ∈ {σi |i = 1, ..., N , and let the energy of interac-

tions between adjacent monomers be defined by an N × N matrix ξ (σi ,σ j ) (mea-

sured in the KT units). For a particular conformation of the chain P , defined by the

states of the monomers {σ (0), σ (1), ..., σ (L)}, let the exponent of its energy, E(P),

be the product of the exponents of its local interaction energies: S(P) = e–E(P) =∏
k=1...Le–ξ (σ (k–1),σ (k)). Let 
 be the set of all conformations. We need to calculate the

partition function of the set of all conformations � =∑
P∈
 S(P).

We construct a graph whose vertices correspond to monomer states, so that their

number is (L + 1) · N + 2 (two additional vertices are the source and the sink, corre-

sponding to the virtual start and end of the chain), the arcs link vertices corresponding

to adjacent monomers, and arc weights are the interaction energies. Paths through this

graph exactly correspond to the chain conformations. If we set ⊗ to be ordinary mul-

tiplication, and ⊕ to be addition, the path score becomes the product of arc weights,

and the total graph score is the sum of these products: this is exactly what we need,

and we may immediately apply dynamic programming.



86 Part I Genomes

Q Quiz 13
(a) How many operations shall we need? (b) How many operations shall we need if we

calculate the partition function directly?

Q Quiz 14
Provide an algorithm for calculating the number of paths in a graph. Hint: recall

Quiz 6.

Q Quiz 15
What will � be if both ⊗ and ⊕ are the operation of taking the maximum?

We shall end with describing, without detail, one last problem of the polymer

physics.

Problem 5 In the conditions of Problem 4, calculate the minimum energy and the

number of conformations with the minimum energy.

This is solved as follows: arc weights are pairs [1, ξ ], with ξ as defined above, and

path scores are pars [n, ε], where ε is the energy, and n is the number of conformations

having this energy. When two physical systems are combined, the resulting energy is

the sum of the systems’ energies, whereas the number of states is the product of the

numbers of states. Hence, dynamic programming with [n1, ε1] ⊗ [n2, ε2] = [n1 · n2,

ε1 + ε2], and

[n1, ε1] ⊕ [n2, ε2] =

⎧⎪⎨
⎪⎩

[n1, ε1] if ε1 < ε2,

[n1 + n2, ε], if ε1 = ε2 = ε,

[n2, ε2], if ε1 > ε2,

(4.5)

solves the problem.

Lesson Generalizations are useful.

Note Not all problems that can be solved by dynamic programming have a simple

graph representation. For example, reconstruction of the secondary structure of an RNA

molecule given its sequence can be decomposed into simpler, embedded problems and

can be solved by a variant of the dynamic programming algorithm, but in the language

of this paragraph it requires slightly more complicated objects called hypergraphs.

A Answers to Quiz

1 (a) (y1 + ... + yn) · m − 1; (b) (y1+ ... + yn) + m – 2; (c) mn taking to the power and

mn – 1 multiplications, or, better, n taking to the power and m + n − 2 multiplications;

(d) one taking to the power, m − 1 multiplications, n − 1 additions.
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(a) (b) (c) (d)

Figure 4.13 All connected acyclic graphs with three vertices.

(a) (b) (c) (d)

Figure 4.14 Sources are shown by blue circles; sinks, by yellow circles.

(a) (b)

2

2

1
1

1

2

(c)

1

Figure 4.15 In (a) and (c) the greedy algorithm constructs the highest-scoring path; in (b) it
does not.

2 (a) See Figure 4.13. (b) 18 graphs: 3 of type (a), 6 of type (b), 3 of type (c), 6 of type

(d). The types are defined in Figure 4.13.

3 (a) Consider an arbitrary vertex. If it is an end of an arc, move to the start vertex of

this arc. Continue in this manner. If you arrive at a vertex which is not the end for any

arc, it is a source. Otherwise you will arrive at one of the already considered vertices

and hence construct a cycle, in contradiction to the graph being acyclic. A similar

construction works for the sinks. (b) See Figure 4.14.

4 Steps 5, 6, 7.
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Figure 4.16 For this graph the greedy algorithm and the dynamic programming algorithm
construct the same highest-scoring path.

(a) (b)

1

1
1

1
1 1

1

1

1 1

11

11 1 1

11

1 1

Figure 4.17 (a) Arc weights for constructing the longest path. (b) Three different longest
paths, shown by different types of colored arrows with mixed colors corresponding to common
parts (green = yellow + blue; violet = blue + red; brown = yellow + blue + red).

5 (a–c) See Figure 4.15. (d) See Figure 4.16.

6 See Figure 4.17.

7 See Figure 4.18.
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(a) (b)

(c)
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Figure 4.18 (a) The lowest-scoring path. (b) The path constructed by the greedy algorithm
(note that there is a variant shown by dark green arcs). (c) Three different shortest paths
(shown by different types of colored arrows). Notation in (a) and (b) as in Figure 4.5; color
code in (c) as in Figure 4.17.

8 (a) 2r – 5p; (b) 3r– p – 6q; (c) 4r – 6q.

9 See Figure 4.19.

10 (a) is optimal if 6q − 5p > 20, (c) is optimal if 6q − 5p < 20, (a) and (c) are tied if

6q − 5p = 20. (b) is never optimal, since for a positive mismatch penalty of p it is

always inferior to (c).

11 The path going through all top vertices (the entire sequence fragment is an intron) and

the path going through all bottom vertices (the entire fragment is an exon). We need
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Figure 4.19 Optimal “hanging-ends” alignments. Two equivalent forms are given with (a)
weights of side arcs set to 0; and (b) zero-weight arcs from source to side vertices and from
side vertices to sink. Highest-scoring paths are shown by black vertices.

two arcs going from the source to the sink, one assigned an intron weight, and the other

assigned an exon weight.

12 When z = 0 or x + y + z = 1.

13 (a) There are K 2 arcs between each layer of vertices corresponding to pairs of adjacent,

interacting monomers, and there are L pairs, hence, O(LK2). (b) O(L K ).

14 Set all arc weights to 1, ⊗ to be ordinary multiplication, and ⊕ to be addition. Each

path weight is now exactly 1, and the sum of all path weights is the sum of 1s, whose

number is the number of paths.

15 Maximal arc weight.
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HISTORY, SOURCES, AND FURTHER READING

There exists a huge body of literature on the application of dynamic programming
to biological problems, and this paragraph mentions only the first or best-known
papers, or those that explicitly influenced the text above.

The dynamic programming algorithm was suggested by Bellman [1]. The matrix
technique was introduced by Kramers and Wannier [2] and has been used in
biophysics, in particular, for the analysis of helix–coil transitions in proteins by
Zimm and Bragg [3] and in DNA by Vedenov et al. [4].

One of the first applications to molecular biology is due to Tumanyan, who
used it to predict the RNA secondary structure given sequence [5]. The global
alignment algorithm was developed by Needleman and Wunsch [6], and the local
alignment was developed by Smith and Waterman [7]. Amino acid substitution
matrices were first constructed by Dayhoff [8].

The idea of gene recognition using statistics of protein-coding and non-coding
regions was introduced by Fickett [9] and Staden [10], and the dynamic
programming was applied to this problem by Snyder and Stormo [11] as well as
Roytberg and Gelfand [12].

The exposition here follows Finkelstein and Roytberg [13], and that paper
contains several additional examples. The general algorithmic treatment in the
formal language of semirings can be found in a textbook by Aho et al. [14]. A
modern, closely related area using many similar approaches, Hidden Markov
Models, is covered in a book by Durbin et al. [15].
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CHAPTER FIVE

Measuring evidence: who’s
your daddy?

Christopher Lee

Single nucleotide polymorphisms (SNPs) are widely used as a genetic “fingerprint” for forensic
tests and other genetic screening. For example, they can be used to measure evidence for
paternity. To understand how scientists measure the strength of such evidence, we introduce
basic principles of statistical inference using Bayes’ Law, and apply them to simple genetics
examples and the more challenging case of paternity testing. But first, just to make it personal,
Maury and I have a little revelation for you ...

1 Welcome to the Maury Povich Show!

On camera, your mom just told you that your dad, Bob, isn’t your real dad! And Maury

has just introduced you to the two men who both claim to be your father: Rocco, an

aging biker dude with lots of tatoos; and Jacques, a chef in whose restaurant your

mom waitressed 18 years ago. But is either of them actually your father? Once again

it’s time to announce the results of a paternity test LIVE on the Maury Povich Show!

But between your tears (“But what about Dad ... er, my ex-Dad ...”), your anger (“how

could you do this to me ...”), and your intellectual curiosity (“Does this mean I can get

the 8 course tasting menu at Chez Jacques for free?”), the science-nerd part of your

mind is wondering exactly how paternity tests work, and how Maury can really claim

to have so many decimal places of confidence regarding the result. Read on.

Bioinformatics for Biologists, ed. P. Pevzner and R. Shamir. Published by Cambridge University Press.
C© Cambridge University Press 2011.
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1.1 What makes you you
You already know the basics about DNA, the famed double helix. You know that it stores

your “genetic code” that encodes the genes and proteins that build your body. Of course,

your DNA is not exactly the same as anyone else’s DNA – even your mom’s, since you

have two copies of each chromosome, one copy from your mom and one copy from your

dad. There are many kinds of DNA differences from person to person, ranging from

substitution of a single “base” in the sequence, to insertion, deletion, or rearrangement

of a large interval on a chromosome. Numerically, single base substitutions are the most

common. Scientists call them “single nucleotide polymorphisms” (SNPs, pronounced

“snips”), where the term “polymorphism” means that the substitution is found in only

a portion of the human population, while the original base (nucleotide) is found in the

remainder. SNPs’ abundance makes them a good candidate for use as a “molecular

fingerprint” that uniquely identifies each human individual, for paternity tests, forensic

tests, etc. For an individual person, only three states are possible for a specific SNP:

you either inherited it from both your parents (“homozygous”), from only one of your

parents (“heterozygous”), or from neither of your parents (“homozygous normal”). In

other words, because you have two copies of each gene, you can only have two, one,

or zero copies of a given SNP.

SNPs are extremely interesting scientifically and historically. Some SNPs cause

serious diseases such as sickle-cell anemia. For example, β-hemoglobin is a vital

component of red blood cells, and helps carry oxygen in the blood. A SNP in the

gene encoding β-hemoglobin causes the protein to polymerize into fibers that distort

the red blood cell into a sickle-like shape, and damage them. If you inherit a β-

hemoglobin gene containing the sickle-cell SNP from both your mother and father (i.e.

homozygous), you will develop this serious disease. On the other hand, if you inherit

one normal copy of the gene (no SNP) from one parent, and one copy containing

the SNP from the other parent (i.e. heterozygous), not only does this combination

not cause sickle-cell disease, but it actually protects you from a completely different

disease, malaria (specifically, it reduces your risk of severe malaria by about 10-fold).

You will perhaps not be surprised to learn that the sickle-cell SNP appears to have

originated in tropical areas of Africa where malaria is common. Scientists believe the

sickle-cell SNP is relatively common (despite the fact that it causes sickle-cell disease)

because of this protective effect against malaria. Other SNPs cause more moderate

but still potent effects on traits such as human personality. For example, serotonin

is an important neurotransmitter involved in many aspects of mood and behavior. A

number of SNPs in genes affecting serotonin have been shown to significantly change

an individual’s risk of attempting suicide. Chinese researchers reported that among

patients with severe depression, those who were homozygous for one such SNP were
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three times less likely to attempt suicide, compared with those who were heterozygous

or homozygous normal. Since there are over three million common SNPs in the human

genome (and an even greater number of less frequent SNPs), an enormous amount of

research is ongoing to discover those that play a causal or diagnostic role in human

diseases.

Where does a SNP come from? At some moment in the past, a mutation occurred

in one person’s DNA, either due to ultraviolet light, radiation, or simply the imperfect

fidelity of the molecular machinery that copies DNA. This newly created SNP will

be passed on to half of that person’s descendants on average (which could be a huge

number of people, if the population is expanding). Due to random oscillations in the

SNP’s frequency among successive generations (referred to as “genetic drift”), over

time it is increasingly likely either to vanish from the human population, or alternatively

become “fixed” in the population (i.e. everyone has it). The fact that the SNPs that we

detect today haven’t reached either of those end points implies that they are relatively

recent (in evolutionary terms).

Of course, when a SNP is first created, it isn’t created in a vacuum, but in a

context of other pre-existing SNPs. In other words, the chromosome on which the

new SNP is created already contained many SNPs. So at first this SNP is always

found with that unique fingerprint of SNPs; this is referred to as genetic linkage.

In successive generations, this linkage will gradually be cut down by the process

of homologous recombination, in which a matched pair of chromosomes exchange

one or more segments. As a result, the SNP will no longer show its original 100%

linkage to other SNPs on the entire chromosome, but instead only to neighboring

SNPs that are so close to it that no recombination event has yet occurred between

them. Over time, recombination events on that chromosome will whittle away these

linkages, until eventually the SNPs become no more likely to be found together than

expected by random chance. Since recombination is more likely between SNPs that

are distant from each other, these associations disappear first. For this reason, the

region of SNPs linked to the new SNP will gradually shrink. Thus the size of the

“island” of linkage around a given SNP directly tells you how old it is, and the specific

SNPs that are linked gives you a “genetic fingerprint” of the person in whom the

SNP was first created. Everyone who has that SNP today is descended from that one

person.

Think about it. Each one of the three million common SNPs in the human provides

a detailed recording of who’s related to who, who invaded who, when, etc. Historians

have never had such a detailed record of history for each individual before – and it

reaches deep into the past, into prehistory. Indeed, some human SNPs are also found

in chimpanzees. That means they occurred in an ancestor of both humans and chimps.

That’s old.



96 Part I Genomes

1.2 SNPs, forensics, Jacques, and you
That may be fascinating for us science-nerds, but why should Maury Povich care about

SNPs? Because SNPs provide an easy and inexpensive way to identify one person’s

DNA vs. another’s, and test relatedness very precisely. Both forensic DNA tests and

paternity tests can take advantage of this. And Maury is all over those paternity

tests!

Great technology exists for detecting SNPs en masse. A single microchip (called a

DNA microarray) can detect nearly a million different SNPs simultaneously; a single

test machine can run over 750 such microarray samples per week. Only a tiny amount

of DNA (200 ng) is required to perform the analysis. Both Rocco and Jacques are good

for giving you that amount of their DNA, so your paternity test is a GO. The DNA

sample is fragmented into very small pieces (25 to 125 bp), labeled with a fluorescent

dye, and placed on the microarray. If a specific SNP is present in the sample, that

piece of DNA will bind (base-pair) to a corresponding “probe sequence” on the DNA

microarray, which is then scanned with a laser to detect fluorescence at each SNP

location on the array. The output signal is simply the amount of fluorescence detected

for each SNP. Since each person has two copies of every chromosome (each of which

could either have the SNP, or not) the fluorescent signal should cluster into three distinct

peaks: little or no fluorescence (indicating that the SNP was absent from both copies);

medium fluorescence (indicating the SNP was present on only one copy); and bright

fluorescence (indicating its presence on both copies).

If we were performing a forensic DNA test to see whether a suspect’s DNA matches

a sample obtained from a crime scene, we’d just check whether these fluorescence

values matched between the two samples, for every SNP on the array. However, for a

paternity test it’s a lot more complicated: we don’t expect an exact match between your

true father and you; you got half your DNA from your mom, and half from your dad.

Typically, when you compare your result vs. Jacques’ result for a given SNP, there is

no definitive interpretation, since most of the possible results are consistent with both

him being your father, or not. There are only two clear-cut cases: if Jacques appears

to have two copies of a SNP, and you have no copy (or vice versa), he should not be

your father. However, these cases are very rare. Moreover, while a typical SNP result

may not be interpretable by itself, it does supply useful information on whether he’s

likely to be your father. What we would like to do is develop a computational method

that measures the total evidence from all the SNPs on the microarray to assess the

probability that Jacques is your father.

This is a problem of statistical inference – reasoning under uncertainty. It has many

angles, but its core principles are both extremely useful and surprisingly simple to

learn. Read on.
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2 Inference

2.1 The foundation: thinking about probability “conditionally”
Consider the kinds of statements about probability we often hear in the media, such as

“the probability of rain is 80%,” or “The company’s new AIDS diagnostic test is 97%

accurate.” Mathematicians call these unconditional probability statements, which we

write as:

Pr(H ) ≡ total probability of event H (over the set of all possible events S).

Using the intuitive concept of probability as the fraction of possible events that meet

a particular condition, and indicating “the count of events where H occurred” as |H |,
this simply becomes

Pr(H ) = |H |
|S| .

A more sophisticated way to talk about probability is to specify exactly what condi-

tion it was measured under. We write a conditional probability in the form

Pr(H |O) ≡ probability that event H occurs in the subset of cases where event O did

indeed occur.

Treating these as sets in a “Venn diagram,” see Figure 5.1, we write their “intersection”

as H ∩ O . Using this notation, the conditional probability becomes

Pr(H |O) = |H ∩ O|
|O| .

Following this logic, we can express the “joint probability” that both H and O occur,

in terms of their separate conditional and unconditional probabilities:

Pr(H ∩ O) = |H ∩ O|
|S| = |H ∩ O|

|O|
|O|
|S| = Pr(H |O) Pr(O). (5.1)

Furthermore, since the order of H, O does not matter for the “intersection” operation

(i.e. H ∩ O = O ∩ H ), we can equally correctly write the reverse:

Pr(H ∩ O) = Pr(O|H ) Pr(H ).

Finally, note that our definition of probability inherently sums to one whenever we

sum it over the entire set S, as long as our individual “pieces” H do not overlap.

∑
H

Pr(H ) = |H1|
|S| + |H2|

|S| + . . . + |Hn|
|S| = |S|

|S| = 1.
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S

H O

Figure 5.1 A Venn diagram illustrating the conditional probability identity. Each ellipse
represents the set of occurrences of a specified event, H or O . The larger ellipse S constitutes
the set of all possible events considered in this probability calculation. The intersection H ∩ O
represents events where both H and O co-occurred.

This property is called “normalization.” Applied to a joint probability, it gives another

important principle:

∑
H

Pr(H ∩ O) =
∑

H

Pr(H |O) Pr(O) =
(∑

H

Pr(H |O)

)
Pr(O) = Pr(O).

Thus, we can eliminate a variable from a joint probability by summing over all possible

values of that variable.

2.1.1 The disease test
To understand how this matters for everyday life, let’s look at a simple example.

A company reports that their new test for a disease is 97% accurate. Table 5.1

shows the raw data, which appear to support this claim. Among patients who do not

have disease, the test gives the right answer 960/990 = 97% of the time, and among

patients who have disease (a much rarer case), it gives the right answer 9/10 = 90% of

the time.

There is just one catch here: these are not the conditional probabilities that a doctor

(or patient) cares about! The whole point of the test result (T ) is to give information

about whether the patient has disease (D); we want to use the observed variable T

to learn about the hidden variable D. Thus the probabilities above (Pr(T −|D−) and

Pr(T +|D+)) are irrelevant and useless. What we really care about is the converse,

the probability that a patient has disease given a positive test result, Pr(D+|T +). And

there’s the rub: Pr(D+|T +) = 9/39 = 23%. More than three-quarters of the patients
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Table 5.1 A diagnostic disease test: 1,000 patients
were given a diagnostic test that gives either a
positive (T+) or negative (T−) result, and
independently assessed for whether they have the
disease (D+) or not (D−) by rigorous clinical criteria.

T− T+ Total

D+ 1 9 10
D− 960 30 990
Total 961 39 1000

with positive test results do not actually have the disease! This could be a very serious

problem, not only because of the stress of patients’ being (falsely) told they have the

disease, but also because this may subject them to additional expensive and possibly

dangerous procedures.

This example illustrates several lessons.

� The “perfect lie”: as this example shows, an unconditional probability statement can

be both completely misleading and at the same time “factually correct”! The problem

with an unconditional probability is that it doesn’t tell you what conditions were used

to obtain it. What assumptions (sensible or insane) gave rise to this number? You

don’t know. By choosing different conditions, I can select a number that suits my

purposes. As the example demonstrates, even within the strict limits of the correct

data, freedom to pick our conditions gives us enough latitude to turn the conclusion

upside down! The purpose of conditional probability is to make assumptions

explicit.
� Strictly speaking, every probability calculation has at least some assumptions. So an

unconditional probability statement is really a conditional probability traveling

incognito – without telling you what its conditions were.
� It is a fatal mistake to confuse one conditional probability with its converse (i.e.

Pr(X |Y ) vs. Pr(Y |X )). They are quite different! Once you’re aware of this distinction,

you will find that people mix up converse probabilities all the time, sometimes due to

poor thinking, and sometimes deceptively. When you listen to a politician, newspaper

article, advertisement, or anyone else with “something to sell,” see if you can catalog

all the sins they commit against conditional probability. Remember that “97% test

accuracy” may be completely irrelevant to the question that matters – especially if

they don’t even tell you what conditional probability it represents!
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2.2 Bayes’ Law
This is all very well, but you may be wondering how this helps us decide whether

Jacques is your father. The answer is, conditional probability leads immediately to a

simple law for inference. Since (by symmetry) it is equally true that

Pr(H |O) Pr(O) = Pr(H ∩ O) = Pr(O|H ) Pr(H ).

So

Pr(H |O) = Pr(O|H ) Pr(H )

Pr(O)
. (5.2)

This is Bayes’ Law, and it is inference in a nutshell. It allows us to compute

the probability of some hidden event H given that some observable event O has

occurred, provided that we know the converse probability that observation O will

occur assuming H has occurred. (Intuitively, let’s define “observable” as any variable

that we can measure directly, with zero uncertainty, and “hidden” as everything else.)

For convenience we often replace Pr(O) by the sum of Pr(H ∩ O) over all possible

values of H . Note that this is equivalent to summing the expression that appears in the

numerator, and is called “normalizing” the probabilities, since it makes them add up

to 1 as probabilities always should.

Pr(H |O) = Pr(O|H ) Pr(H )∑
h Pr(O|h) Pr(h)

. (5.3)

To see how Bayes’ Law solves problems, let’s look at a simple genetics example.

2.3 Estimating disease risk
A disease is defined as “recessive” if a single copy of the normal gene is sufficient

to prevent disease, even if one copy of the genetic variant that causes disease is also

present. Say a disease gene has been mapped to the X chromosome. Women have two

copies of the X chromosome (they have two female sex chromosomes, X X ) whereas

men have only one copy (they have one X chromosome and one Y chromosome, XY ).

For this reason, recessive traits that map to the X chromosome behave differently in

men as compared to women. For a man, a single bad copy of the gene (which we will

symbolize as x) will give him disease. Such a man will be xY , whereas a woman with

one copy of the disease gene (x X ) will not develop disease symptoms, because she still

has one “good copy” of the gene. Such a woman is referred to as a “disease carrier.”

Only women with two bad copies of the gene (xx) will show symptoms of the disease.

Consider a woman M who is a disease carrier (x X ); she will have no symptoms

(which we will symbolize as M−), but her sons are at high risk for the disease,

because they only inherit the X chromosome from their mother (they inherit a male
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Y chromosome from their father; only daughters inherit an X chromosome from the

father). Specifically, each son S has a 50% probability of inheriting his mother’s “bad

copy” of the gene (x) and developing disease symptoms, which we will symbolize

as S+.

Let’s say a woman comes from a family background where the disease allele x

is Pr(x) = 0.1 (i.e. 10%), but shows no symptoms. If she has a single son who is

symptom-free (S−), what is the probability that she is a disease carrier (x X )? We

simply apply Bayes’ Law:

Pr(x X |S−) = Pr(S−|x X ) Pr(x X )

Pr(S−|x X ) Pr(x X ) + Pr(S−|X X ) Pr(X X ) + Pr(S−|xx) Pr(xx)
.

We know the probabilities of the observations: Pr(S−|x X ) = 0.5, Pr(S−|xx) = 0, and

Pr(S−|X X ) = 1. We also know the probabilities of the woman’s genes: Pr(X X ) =
(1 − Pr(x))2 = 0.81, and Pr(xx) = Pr(x)2 = 0.01. Thus, without considering any

observations, her probability of being a disease carrier is just the remainder, Pr(x X ) =
1 − 0.81 − 0.01 = 0.18. Taking into account the observation that her son is symptom-

free,

Pr(x X |S−) = 0.5(.18)

0.5(.18) + 1(.81) + 0(0.01)
= 0.1. (5.4)

Thus, having one disease-free son reduces her probability of being a disease carrier by

approximately a factor of 2. (If you want deeper insight into where this number comes

from, consider the fact that this outcome (S−) is twice as likely under the dominant

state, X X .) Note that we didn’t really need to consider the xx case, since it’s completely

incompatible with the observation S−, and thus makes no contribution to the sum.

What if she has a second disease-free son?

Pr(x X |S−S−) = Pr(S−S−|x X ) Pr(x X )

Pr(S−S−|x X ) Pr(x X ) + Pr(S−S−|X X ) Pr(X X )

= 0.5(0.5)(.18)

0.5(0.5)(.18) + 1(1)(.81)
= 0.053.

Again the probability has dropped by another factor of 2 (approximately).

What if the woman now has a third son who shows disease symptoms?

Pr(x X |S−S−S+) = Pr(S−S−S+|x X ) Pr(x X )

Pr(S−S−S+|x X ) Pr(x X ) + Pr(S−S−S+|X X ) Pr(X X )

= 0.5(0.5)(0.5)(.18)

0.5(0.5)(0.5)(.18) + 1(1)(0)(.81)
= 1.

A single observation has caused the probability of x X to rocket from 5.3% to 100%,

for the simple reason that this observation is impossible under the X X model. Thus
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Bayesian inference correctly models even somewhat subtle reasoning processes, which

can produce rather dramatic effects like this: a single observation can completely

change the entire result. We can see from this example a general principle: a “powerful”

observation (one that can change our conclusions dramatically) is one that is highly

unlikely under the currently most probable model.

2.4 A recipe for inference
Now that we’ve seen Bayes’ Law in action, we should take stock and try to generalize

what we’ve learned. We can use Bayes’ Law as a “recipe” whose parts give us a very

clear list of the ingredients necessary for solving any inference problem. Let’s take

each term of Bayes’ Law, give it a name, and state precisely what role it plays in

inference:

Pr(H |O) = Pr(O|H ) Pr(H )∑
H Pr(O|H ) Pr(H )

. (5.5)

� What is observed (O)? The core of inference is distinguishing clearly between hidden

variables vs. observed variables. We must be careful not to miscategorize as

“observable” quantities that actually are hidden. In general, anything that has

uncertainty cannot be considered to be “observable,” and should instead be

considered hidden.
� What is hidden (H )? In science, most things we want to know fall into this “hidden”

category; the real question is how to formulate what we want to know as a precise

mathematical parameter. This means deciding which aspects of the outward

appearance of a problem are extraneous and should be ignored, versus which part(s)

are core. And that is the essence of our next ingredient ...
� What is the likelihood model Pr(O|H )? In Bayesian inference, the probability of an

observation given a hidden state is referred to as a likelihood, and the function that

allows us to calculate it for a specified pair of observable and hidden variables is a

likelihood model. Choosing a likelihood model means proposing a process that

explains how the observations were produced. A likelihood model usually depends on

one or more hidden parameters that shape it. For example, if the observable can only

have two possible outcomes (e.g. “rain” vs. “no rain”), one possible model is to

assume that each event outcome occurs independently (i.e. whether it rained

yesterday has no effect on whether it will rain today). This model is called the

binomial probability distribution, and has only one hidden parameter (usually called

θ), the probability of our primary outcome (e.g. the probability that it will rain on any

given day). So in this case we would use the binomial distribution as our likelihood
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equation, and we would treat θ as the hidden variable whose value we are trying to

infer.
� What is the prior Pr(H )? We refer to the unconditional probability of H (in the

absence of any observations) as its “prior probability.” There are two types of priors:

those measured directly from previous data sets (as posteriors, see below); and

uninformative priors. The most common uninformative prior is just a constant; in this

case, the prior simply cancels from numerator and denominator. However, it should be

remembered that priors are important, and that they are one of the major differences

between Bayesian inference and other approaches (e.g. maximum likelihood).
� What is the set of all possible models? The summation in the denominator must be

taken over all possible values of the hidden variable(s).
� What is the posterior Pr(H |O)? With all of the above ingredients in hand, we can

finally calculate the result, the evidence for a specific model H given the set of

observations O . This is called the posterior probability of model H .

3 Paternity inference

So how can we apply all this to Rocco and Jacques’ DNA samples to determine which

(if either) is your dad? We just follow the recipe.

� What is observed? The fluorescence signal for each probe on the microarray. Let’s

call it A for the “candidate dad” sample; B for your DNA sample.
� What is hidden? To keep things simple, let’s consider only one candidate dad (Rocco

or Jacques) at a time. We’ll construct two models dad and not-dad, and calculate their

relative posterior probabilities given the observations for that candidate dad.

However, there is a bit more to this problem: to calculate these probabilities using

SNPs, we also need to determine for each sample how many copies of each SNP it

contains. That too is a hidden variable; let’s call it α = 0, 1, 2 for the “candidate dad”,

and β = 0, 1, 2 for you.
� What is the likelihood model Pr(A|α)? As we stated before, the fluorescence signal

tends to cluster into three distinct peaks, one for each possible value of α = 0, 1, 2

(Figure 5.2). Note that the figure represents good separation between the three peaks,

which will give stronger paternity results. Bear in mind that for some probes, the

three peaks will not be well separated, creating strong uncertainty about the true

value of α. Our statistical inference calculation will automatically take this into

account in its computation of the evidence.
� What is the prior Pr(α)? Say the frequency of the SNP on chromosomes in the

general human population is f . Then the chance of getting 2 copies of the SNP is just
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Figure 5.2 The likelihood models for the fluorescence signal for α = 0 (blue), α = 1 (green),
and α = 2 (red) for an idealized SNP. As you can see, the fluorescence signal indicates
approximately what fraction of the DNA sample contains the SNP.

Pr(α = 2| f ) = f 2; similarly, the probability of getting 0 copies is Pr(α = 0| f ) =
(1 − f )2. Consequently the remaining probability Pr(α = 1| f ) = 1 − f 2−
(1 − f )2 = 2 f (1 − f ).

Next, what should we use as the prior probability Pr (dad)? Conservatively, your

dad could be any adult male on planet Earth, so we can set Pr(dad) = 1/(3 × 109),

and Pr(not-dad) = 1 − Pr(dad).
� What is the set of all possible models? There are two possible cases: either the

candidate is your dad, or not. For the not-dad model, we simply treat α, β as being

drawn from the general population, i.e. each just depends on f . For the dad model,

we make β depend partly on α (because half your DNA comes from your dad). See

Figure 5.3 to compare our two models.

Let’s consider exactly how the dad model modifies our prior for β. For example, if

your dad has α copies of the SNP, the chance of getting the SNP from him is α/2.

Assuming that we don’t have any SNP data from your mom, we simply treat her as a

member of the general population, i.e. your chance of inheriting a copy of the SNP
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Figure 5.3 Dependency structure of the (a) dad model; (b) not-dad model.

from her is just f . From this we can immediately infer that your probability of getting

β = 2 copies (i.e. one from your dad, and one from your mom) is just

Pr(β = 2|dad, α, f ) = α

2
f.

We can apply the same logic to the β = 0 case, i.e. your probability of inheriting no

copy of the SNP from both your dad and your mom:

Pr(β = 0|dad, α, f ) = 2 − α

2
(1 − f ).

Actually, we’re almost done! There is only one more possible case, whose probability

we can get by simply subtracting the previous two cases from 1 (after all, the

probability of all three cases must sum to 1!):

Pr(β = 1|dad, α, f ) = 1 − α

2
f − 2 − α

2
(1 − f ) = α

2
+ f − α f.

� What is the posterior Pr(dad|A, B)? We just follow Bayes’ Law, to compute the ratio

of the posterior probabilities for the dad vs. not-dad models. This calculation is

easier than it looks. First of all, note that the denominator of Bayes’ Law is the same

no matter what model you apply it to. For our problem, Bayes’ Law gives:

Pr(dad|A, B, f ) = Pr(A, B|dad, f ) Pr(dad)

Pr(A, B| f )
.

So if all we want is the “odds ratio” of the posterior probabilities of the two models

dad vs. not-dad, we can just calculate the ratio of the numerator of Bayes’ Law for
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the two models:

Pr(dad|A, B, f )

Pr(not-dad|A, B, f )
= Pr(A, B|dad, f ) Pr(dad)

Pr(A, B| f )

Pr(A, B| f )

Pr(A, B|not-dad, f ) Pr(not-dad)

= Pr(A, B|dad, f ) Pr(dad)

Pr(A, B|not-dad, f ) Pr(not-dad)
.

Next, let’s look at the likelihood Pr(A, B|dad, f ). We know how to compute a

probability that includes the additional variables α, β, i.e.

p(A, B, α, β|dad, f ) = p(A|α)p(B|β)p(α| f )p(β|dad, α, f ).

So the obvious question is, how do we get rid of α, β from this probability? That’s

easy: we just sum over all possible values of α = 0, 1, 2, and β = 0, 1, 2:

p(A, B|dad, f ) =
2∑

α=0

2∑
β=0

p(A, B, α, β|dad, f ).

Plugging in the various probability terms we have

Pr(A, B|dad, f ) =
2∑

α=0

⎛
⎝Pr(α| f ) Pr(A|α)

2∑
β=0

Pr(β|dad, α, f ) Pr(B|β)

⎞
⎠

and

Pr(A, B|not-dad, f ) =
(

2∑
α=0

Pr(α| f ) Pr(A|α)

)⎛
⎝ 2∑

β=0

Pr(β| f ) Pr(B|β)

⎞
⎠.

Now we’re ready to plug in some data from Jacques and you: the first SNP reading

(A ≈ 0.5, B ≈ 0.5) indicates α = 1 for Jacques and β = 1 for you (i.e. you both have

one copy of the SNP). This result could occur both if Jacques were your father, and if

he weren’t (you could have gotten this SNP from your mother). But now we can use

our probability calculations to weigh the evidence. It turns out to depend strongly on

the SNP’s frequency in the population ( f ); see Figure 5.4. At high SNP frequency, the

fact that both Jacques and you have the SNP might well just be a coincidence, leading

to a dad/not-dad ratio of approximately one (i.e. neither model is favored over the

other). However, as the SNP frequency becomes smaller, this becomes increasingly

unlikely, and gives stronger evidence that Jacques is your father. As you can see from

Figure 5.4, the calculations show that at this SNP’s known frequency (10%), the data

favor the dad model by about threefold.

So far we’ve restricted ourselves to talking about the calculation for a single SNP.

But there are a million SNPs on the microarray! Combining the evidence for all

the SNPs is very simple. Assuming that our SNP marker set was chosen to be non-

redundant (each SNP in the set is independent of the others), we can simply multiply
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Figure 5.4 Effect of SNP frequency f (x-axis) on dad /not-dad ratio (y-axis).

the probabilities computed for each SNP. Even if the evidence from any one SNP

is relatively weak, over a million SNPs the total evidence will add up very quickly,

to a very big number favoring the correct model and rejecting the incorrect model.

Remember that to convince us that the candidate really is your father, the evidence in

favor of the dad model must be much bigger than the prior odds ratio that we made

favor the not-dad model (by 3 × 109).

Note that we’ll do this analysis separately for Rocco and Jacques. If one of them

gets a huge odds ratio in favor of the dad model, and the other does not, that would

constitute an unambiguous result. Note that there are deeper issues that this calculation

does not fully capture; for example, close relatives would also get a favorable odds

ratio (because they are more related to you than random), but the result would not be as

strong. Additional calculation is required to find the right threshold for distinguishing

a true father from a more distant relative.

Note also that we ignored your mother’s genetic information in this analysis. We

could make it even more accurate, if we included her DNA sample in the calculation

as well. This would be very easy to do: we would just make your state (β) depend on

your mom’s state just like we made it depend on your dad’s state (α).
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QUESTIONS

(1) What would happen if the fluorescence observations from the “candidate dad” (variable
A) actually came from your true father’s brother? On average, how will the value of
(Pr A, B| dad, f ) compare with the value expected if the A data really came from your
father? On average, how will the value of Pr (A, B| not-dad, f ) compare with the value
expected if the A data really came from someone unrelated to your father? What about if
the fluorescence observations actually came from your mother?

(2) How exactly would you modify the model to incorporate fluorescence observations (call
them variable C ) derived from a sample of your mom’s DNA? Derive an expression for
Pr (A, B, C | dad, f ).

(3) How would the model defined in Question 2 handle the case in which the “candidate dad”
observations (variable A) are actually from your mom’s DNA? Specifically, on average,
how will the value of Pr (A, B, C | dad, f ) compare with the value expected if the A data
really came from your father? On average, how will the value of Pr (A, B, C | not-dad, f )
compare with the value expected if the A data really came from someone unrelated to
you? How does this compare with the original model presented in the chapter?
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CHAPTER SIX

How do replication and
transcription change genomes?

Andrey Grigoriev

From the evolutionary standpoint, DNA replication and transcription are two fundamental
processes enabling reliable passage of fitness advantages through generations (in DNA form)
and manifestation of these advantages (in RNA form), respectively. Paradoxically, both of
these basic mechanisms not only preserve genetic information but also apparently cause
systematic genomic changes directly. Here, I show how genome-scale sequence analysis can
help identify such effects, estimate their relative contributions, and find practical application
(e.g. for predicting replication origins). Visualization of bioinformatics results is often the best
way of connecting them to the underlying biological question and I describe the process of
choosing the visual representation that would help compare different organisms, genomes,
and chromosomes.

1 Introduction

A species’ genome relies on faithful reproduction to reap the benefits of selection. The

very fact that the “fine-tuned” genomes of previous generations carrying important

fitness advantages can be preserved in the proliferating progeny is the basis of natural

selection. That is how we currently understand evolution and life around us, and

this grand scheme can operate only under stringent requirements for the precision

with which DNA replicates. It is not surprising, therefore, that one observes higher

replication fidelity in more complex organisms.

Bioinformatics for Biologists, ed. P. Pevzner and R. Shamir. Published by Cambridge University Press.
C© Cambridge University Press 2011.
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For the sake of clarity, however, we leave the “more complex organisms” aside

for the duration of this chapter. The higher fidelity mentioned above results from

many additional processes (including advanced repair) taking place in a cell besides

replication. In order to see the inherent properties of one of the key processes in

sustaining life, replication and its effects are best observed in simple creatures –

bacteria, viruses, and the like.

Having preserved the safe passage of encoded fitness advantages through genera-

tions, a way for a species to extract practical value from its genotype is described by

the central dogma of molecular biology. Here, transcription represents the first step

in the manifestation of selective advantages (conferred by the fidelity of replication),

converting them into RNA form. That is followed by the functional manifestation

asserted on the protein level via translation, protein folding, etc.

At the level of nucleic acids, both replication and transcription are thus needed to

execute the selection. And indeed, they are not commonly viewed as anything else

but faithful reproduction machinery, both on the DNA and RNA level. Hence it is

perhaps surprising that both of these processes seem to cause significant systematic

changes in the genome, even when their enzymatic precision is extremely high and

supported by additional sophisticated repair mechanisms. We shall consider the causes

and consequences of this paradox.

Interestingly and instructively, evidence for genomic changes induced by replica-

tion and transcription comes not from direct biochemical experimentation, but rather

from the bioinformatics analysis of sequenced genomes. Such analysis reveals that

nucleotide composition of different genomes is linked to their large-scale organization

and the specific modes of replication and transcription. We shall see how an organism’s

“lifestyle” leaves traces in the genome composition in the form of relative nucleotide

frequencies and patterns of their change across the chromosomes of modern species.

In what follows, I describe the approaches to detecting such patterns in genomes

of different organisms and organelles and how to compare them. More important,

however, is the methodology of correct interpretation of the observed features, and

here is where our focus shall lie.

2 Cumulative skew diagrams

Scientists had started counting nucleotides in DNA molecules even before the first

sequences became available (as exemplified by Chargaff parity rules, discussed later).

For example, the GC content of a DNA molecule is expressed as a fraction of all

nucleotides in the molecule that are either guanines or cytosines (these nucleotides
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form a base pair with three hydrogen bonds within the double helix). Various properties

of DNA have been associated with GC content (higher stability, stronger stacking

interactions, etc.), but a detailed discussion of those is beyond the scope of the current

chapter. As the sum of G and C nucleotides defines GC content, the difference between

total number of G and C nucleotides determines GC skew (or GC strand asymmetry),

which measures cytosine depletion on one strand compared to its complementary

strand. Such asymmetry was already observed in the first sequenced genomes (those

of viruses), which had appeared with the advent of technologies invented by Sanger

and coworkers in the UK and by Maxam and Gilbert in the US.

Let us reproduce some of these results. We first consider a genome of the simian

virus and break it into consecutive intervals of, say, 100 basepairs in length (such

intervals are called sequence windows). We then calculate differences in the counts

of guanine and cytosine in each sequence window and plot these differences vs the

window position in the viral genome. We designate [N] for a count of nucleotide N

in the window, hence this difference is expressed as [G]–[C]. To avoid the effects of

fluctuations we divide it by the GC content within the window and calculate GC skew,

which we therefore define as the ratio ([G] – [C])/([G] + [C]).

The skew plot is shown in Figure 6.1a (ignore the b section of the figure for now).

Labels on the y-axis are omitted on purpose (except for zero), as we are going to be

mainly concerned with the plot shape rather than with the exact values of the skew.

The x-axis shows the coordinate of the sequence window expressed as percentage of

the genome length, with zero chosen as the start of the sequence file available from

GenBank.

It appears that there are more guanines than cytosines (G > C) across some large

portions of the genome, and G < C across other large portions. Thus GC skew shows

different polarity (or sign, from positive on the left of the plot to negative on the right)

over large genome stretches in the SV40 virus. There seems to be a global polarity

switch somewhere in the center of this viral genome. It is a circular DNA molecule,

so there is another switch (from negative to positive) at the coordinate 100% (or 0%,

which is the same). Hence one half of the genome has positive GC skew, while the

other half has negative GC skew.

The first sequenced bacterial genome, Haemophilis influenzae, also prompted a sim-

ilar observation, although its plot is somewhat murkier (Figure 6.2a). There also seem

to be two global switches of sign of GC skew (one starting a long and predominantly

positive stretch of skew, and the other switching it back to negative) and the distance

between them is also about 50% of the chromosome length.

One problem with this approach is that it is unclear which of these polarity switches

in the middle of the plot of SV40 is actually the global one (where does the long stretch

start and end), or what are their coordinates in the genome of H. influenzae. Traditional
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Figure 6.1 GC skew (a) and cumulative GC skew (b) plots of SV40. As mentioned in the text,
y-axis values in these and other graphs are omitted on purpose, as the shape of the plots is
more important for the purposes of our discussion than the absolute skew values.

techniques of dealing with sequence windows do not really help with the presentation

here. Increasing the window size lowers the number of switches, but hides the exact

coordinate of the global switch. Smoothing the plot by averaging GC skew in sliding

windows does not remove most of the local switches.

In this situation, the solution comes from a numerical integration approach: we could

integrate the skew as a function of chromosomal position. In the simplest implemen-

tation, it is just a sum of the function values across the thinly sliced adjacent windows

(which could be as small as 1 bp). So let us plot cumulative GC skew (a cumulative sum

of GC skew values we have calculated for individual sequence windows) vs. window
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Figure 6.2 GC skew (a) and cumulative GC skew (b) plots of Haemophilis influenzae.

coordinate and obtain a graph of an integral (or an antiderivative) of the skew function

(Figures 6.1b and 6.2b).

Knowing this integral (almost linear in our case), one easily recognizes the global

behavior of the skew itself – it is close to constant on each side of the global switch.

A positive skew would then produce a line with positive slope as its integral, while

negative skew would produce a line with negative slope. So when cumulative GC skew

is plotted for the genomes in question, there is normally a single global maximum and

a single global minimum. While not remarkable in terms of calculus, it is striking from

the biological point of view: those two points correspond to the terminus and origin of

replication (shortened in the literature to ter and ori, and marked by large T and red

arrow on diagrams in Figures 6.1b and 6.2b), respectively. Have a look at Box 6.1 for a

refresher on replication and transcription mechanisms and Figure 6.3 for a schematic
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Box 6.1 Schematics of replication and transcription

In bacteria and many viruses, replication starts from a single replication origin (middle of the bubble on
the right of Figure 6.3) and both parental DNA strands (red) get gradually separated with the bubble
growing in both directions. The parental lagging strand forms a duplex with the continuously
synthesized nascent leading strand (green) and is thus always in a double-stranded state. The parental
leading strand serves as a template for a nascent lagging strand (blue), synthesized as short Okazaki
fragments and later ligated into a continuous chain. Hence this template spends some time
single-stranded (shown in black).

Transcription also separates the two DNA strands opening a bubble of constant size (on the left of
Figure 6.3). However, it is a transient bubble sliding along the transcribed gene in the direction of
transcription. The transcribed strand in this process forms a duplex with the nascent mRNA molecule
(light blue). The non-transcribed strand (also called “sense strand”) remains single-stranded (black)
while the bubble is open. As the mRNA is displaced and the bubble moves along, the next fragment of
the non-transcribed strand enters a single-stranded state. A gene may occur on either of the two DNA
strands and that defines the direction of its transcription. A preponderance of genes on one of the
strands would lead to the other strand spending more time single-stranded.

It is important to remember that published DNA genomes are continuous single strands, such as the
top strand in Figure 6.3. Hence half of a published sequence of, say, Escherichia coli is the leading
strand (after the ori) and the other half the lagging strand (after ter and before ori). Clearly, the term
“strand” is over-used and this may lead to some confusion.

Figure 6.3 Sketch of replication and transcription.

depiction of the replication and transcription bubbles. Pay attention to the differences

between leading, lagging, transcribed, and non-transcribed strands.

3 Different properties of two DNA strands

Cumulative skew plots of three other bacterial genomes – a more exotic linear chromo-

some of Borellia burgdorferi together with the two workhorses of genetics, Escherichia
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Figure 6.4 Cumulative diagrams of a linear chromosome of Borellia burgdorferi (a) and
circular chromosomes of Escherichia coli (b) and Bacillus subtilis (c). Positions of replication
termini are shown with a large black T, while a red arrow marks origins. Note that 0% and
100% correspond to the same coordinate on the circular genomes (hence two arrows for
B. subtilis).
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coli and Bacillus subtilis – are shown in Figure 6.4, and the vast majority of the nearly

1,000 sequenced bacterial genomes tend to produce very similar graphs. While individ-

ual genomes may show peculiar local features, a common global trend of a V-shaped

diagram is clearly seen. In every such case, the distance on the x-axis between maxi-

mum and minimum of GC skew is about half of the genome length. And in all species

where ori and ter have been detected experimentally, they coincide with the extremities

of the species’ cumulative plots (not shown here). The global minimum coincides with

the ori, which means that the genome interval from ori to ter is G-rich, while the

remaining half of a circular chromosome that extends from ter to ori is C-rich and

G-poor. This observation has been generalized, proven experimentally, and is now a

widely accepted method of locating ori and ter in the novel and less-studied microbial

genomes.

Such behavior of the skew function means that the minimum and maximum on

the graph likely represent the points where global biological properties of the DNA

strand change, and that is exactly the case for ori and ter loci in bacteria: DNA there

switches from the leading to the lagging strand, and the mode of synthesis changes,

according to the current theories. The global minimum at the ori is a start of the

leading strand (stretching from ori to ter), while the lagging strand extends from

ter to ori (on the remaining half of a circular chromosome). One strand undergoes

continuous duplication, while Okazaki fragment-driven synthesis takes place on the

other strand (leaving it in a single-stranded state as shown in Box 6.1 and Figure 6.3).

Such asymmetry could lead to differential accumulation of mutations (and different

“mutation pressure”) on the two strands.

On the other hand, ori and ter often mark points in a genome where the preva-

lent direction of transcription changes. Transcription may also amplify the effects

of replication (since leading and transcribed strands would be the same across long

genome stretches in many bacterial species). Remarkably, in most bacterial genomes,

skew is the strongest when only the third codon positions in genes are taken into

account. “Selection pressure” maintaining the gene function by preserving the amino

acid sequence through generations is weakest on these codon positions since a muta-

tion there infrequently changes an encoded amino acid. Therefore, mutation pressure

may be responsible for the observed skews.

There are multiple hypotheses on the nature of the skews and I recommend to

interested readers a thorough review by Frank and Lobry [1]. The most consistent

explanation for the effects observed above (and below) is based on spontaneous deam-

ination of C or 5-methylcytosine in single-stranded DNA. This is by far the most

frequent mutation that replaces cytosine by uracil (or 5-methylcytosine by thymine)

and creates a mismatched basepair T–G. If this mismatch is not repaired, it can lead to
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pairing the mutated base with A during the next round of replication. Eventually, this

would give rise to a relative abundance of G (since C on the other strand is not mutated)

and T (since C on this strand is mutated to T) on one strand. Notably, deamination

rates rise over 100-fold when DNA is single-stranded.

This does not lead to the situation where all available Cs are replaced by Ts, as

further mutagenesis and repair processes continue changing the bases throughout evo-

lution. In fact, AT skew does not always follow in the anti-phase of the GC skew

and the behavior of AT skew is much less regular. However, being the most fre-

quent mutation, cytosine deamination seems to shift the equality [C]=[G] consistently

towards relative excess of guanine on the DNA strand that spends longer time single-

stranded.

This effect is likely a result of two major processes that open the double-stranded

DNA (dsDNA): replication and transcription. This effect is observed not only in bacte-

ria but also in archaea, DNA and RNA viruses, and organelles (such as mitochondria).

We look next in more detail at the viral genomes. In all the different schemes of

replication and transcription for viruses, one can frequently find surprising correlations

with the cumulative skew diagrams of their DNA sequences.

Much like the double-stranded DNA genomes of bacteria (and some archaea), many

dsDNA viruses (for example, the human cytomegalovirus) form characteristic V-

shapes with global minima near the replication origins. However, it is the other shapes

found in cumulative diagrams of viruses that make them very interesting objects for

answering our main question: how do transcription and replication change genome

composition?

One striking example is the human adenovirus, whose linear dsDNA features two

replication origins (one at each end of the genome). Replication leaves the upper strand

in Figure 6.5a in a single-stranded state while the lower strand is being duplicated,

and then completes the process on the upper strand. This means that the displaced

upper strand may be subject to different mutation pressure than the template bottom

strand. Assuming a constant speed of replication, mutation pressure will change along

the sequence, as the time the displaced part of the upper strand spends single-stranded

changes linearly from one end of the molecule to the other. Integration of a linear

function results in a second-order polynomial, a parabola.

Remarkably, the GC diagram of human adenovirus type 40 (Figure 6.5b) has a

shape very close to parabolic. It points upwards, reflecting a decrease in the skew

value from positive to negative along one strand, consistent with the replication mode.

The parabolic trendline reaches its global maximum (meaning that the GC skew equals

zero) close to the middle of the sequence. Replication may start at either origin, so

both strands have a higher GC skew at their respective 5′-ends.
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Figure 6.5 Schema of replication of human adenovirus 40 (a) and its cumulative skew
diagram (b). Replication origins are shown as green boxes, replication complex as green
circles, newly synthesized DNA strands are in red. The parabolic trendline is shown in (b).

4 Replication, transcription, and genome rearrangements

While connection between mutational patterns and replication seems strong, several

papers have reported evidence of mutations caused by the process of transcription.

Clearly, transcription by itself would not distinguish between the leading and lagging

strand. However, transcription-induced mutations would end up on one strand if bias

in gene orientation is strong (e.g. 75% of B. subtilis genes are on the leading strand).

This could generate the compositional asymmetry between the leading and lagging

strand that has been observed in bacterial genomes.

Therefore, replication and transcription may be jointly or separately responsible for

the effects observed. As these processes are so different, how do their contributions

differ? Using the very same technique but carefully choosing the biological system

allows us to address the question. An answer comes from papillomavirus, whose

replication and transcription are co-directional in one half of the genome, and opposite

in the other half. In other words, the replication is bi-directional, while transcription is

unidirectional. If there are separate deamination-driven biases induced by replication

and transcription, they should act in concert in one half of its genome, and in the

opposite directions in the other half.

If this model is correct, a nearly zero slope on the right of the HPV-1A diagram

(Figure 6.6) suggests that a contribution of transcription is comparable to that of repli-

cation in papillomavirus. They almost cancel each other out in the region between
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Figure 6.6 Cumulative skew diagram of HPV-16. Blue arrow shows direction of transcription
and red arrows depict direction of replication.

50 and 100% of the plot ([G] = 758, [C] = 773), and their combined effects pro-

duce significant guanine excess ([G] = 900, [C] = 690) in the other half of the

genome.

This leads us to another important consideration. If the integral of a constant value

produces a linear plot, why is it sometimes very smooth and sometimes so uneven

and jagged (compare B. subtilis, Figure 6.4c, and H. influenzae, Figure 6.2b)? One

explanation is that local irregularities (sequence constraints on amino acid composition,

regulatory sequences, etc.) interfere with a global trend. After all, the sequence that

we observe now is a snapshot of multiple evolutionary forces acting simultaneously

on the same nucleotide positions.

Another explanation is that a sequence inversion would swap the leading and lagging

strand and change the skew to its opposite between the borders of the inversion

(Figure 6.7). This creates the possibility for deviations from perfect linearity, and it

also reverses the direction of transcription for those few genes affected by the inversion.

With regard to directionality of transcription and replication this sounds like a chicken

and egg question: were genes originally co-directional and inversions have changed

that (and introduced jagged skew patterns), or were the genes always divergently

transcribed (and thus generated uneven patterns via opposing effects of transcription

and replication)?

Furthermore, horizontal transfer of DNA between species and sequence insertions

complicates the picture even further. Let us consider an example of a human pathogen,

Helicobacter pylori, associated with stomach ulcers (Figure 6.8). We can see a familiar
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Figure 6.7 Effect of an inversion on the cumulative skew. Schematics of an inversion between
two positions B and C is shown, together with the corresponding change in the cumulative
skew. As G-rich leading strand fragment BC is replaced by a C-rich lagging strand fragment CB,
skew turns from positive to negative over the inverted interval.

V-shaped diagram, featuring a number of inversions and swapped sequences as well as

an insertion of a pathogenicity island (most likely, horizontally transferred). Strikingly,

in the two strains of this bacterium sequenced about a decade ago the position of the

pathogenicity island has remained the same while many other sites in the genome

have undergone significant changes, even those in close proximity to the replication

origin.

The example of H. pylori is also interesting in that we can try and deduce in which

of the two strains is the ori region more intact (closer to the ancestral strain). Let us

consider two facts. First, we note the adjacent positions of the fragments l, m, and n
on the plot in the top diagram versus their scattered and inverted arrangement in the

bottom diagram. Second, we note the sharp global minimum in the ori region in the

top diagram, similar to other bacterial genomes. Logic suggests that the inversions

and translocations took place in the strain shown in the bottom diagram, disrupting

the original arrangement of the fragments l, m, and n. Hence the strain shown on top

likely features the ori organization closest to the ancestral strain, and we were able to

infer this purely from the graphical comparison of the cumulative diagrams.

Remarkably, we have not exhausted the value of such comparison in this example.

Note where the cumulative skew plot ends in the top and bottom diagrams in Figure 6.8.

Following our reasoning, the diagram closest to the ancestral strain (i.e. with fewer

rearrangements) ends closer to the x-axis. Thus the overall counts of Gs and Cs in
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Figure 6.8 Using skew diagrams for compact depiction of genome comparisons between two
strains of Helicobacter pylori. Colored areas under the curve mark genome rearrangements
(designated with letters a–h, j–n). All fragments represent inversions (and, in most cases,
translocations), except for the rearrangements designated “a” (only translocation), “j” and
“e” (both of which represent reciprocal exchange). A small number of strain-specific genes are
not shown; these reside inside larger rearrangements. Note the mirror symmetry of the curve
fragments, corresponding to inversions designated by the same letters in the two strains.
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Box 6.2 Chargaff parity rules

Counting the numbers of individual nucleotides in the chromosomes was one of the key elements
leading to the establishment of DNA structure. There is a well-known Chargaff rule that states that a
single strand of a double-stranded DNA molecule contains as many of each of the four nucleotides as
there are complementary nucleotides in the second strand. This famous observation paved the way to
pairing complementary nucleotides in the DNA structure model.

A later and less-known second Chargaff rule states that a single strand will also contain equal
numbers of complementary nucleotides G and C (or A and T). Almost invariably, publications about this
rule agree on its rather mysterious origin. There is no mystery, however. If one looks at Figure 6.3, it
becomes very clear why Chargaff came to this conclusion when analyzing the B. subtilis genome. The
right end of the curve lands practically on the x -axis so that the total skew is close to zero (i.e. a total G
count is close to that of C).

It is the fact that both stretches of DNA between the origin and terminus in bacterial genomes are of
similar length that explains why their contributions to the skew cancel each other out. However, the
total skew in many other cases is clearly non-zero; for example, in adenovirus or mitochondrial
genomes. Even in bacteria there are clear exceptions. A rearrangement would often be a reason for
that, or a horizontal transfer of DNA from another bacterium, as the example of H. pylori (Figure 6.8)
demonstrates.

that ancestral strain likely were closer to each other. That invites a brief discussion on

counting nucleotides through time as a conclusion of this reading (Box 6.2).

DISCUSSION

We have considered here a number of genomes with different schemes of
replication and transcription across a variety of organisms. Our computational
tool was very simple, yet we could analyze the effects of very fundamental
cellular processes. As with many bioinformatics approaches, what counts is not
the tool itself, but our ability to interpret its output in the context of a specific
biological problem.

Another important point is in making the right choice of the system to study
and studying it well. The highly opportunistic nature of viruses apparent in the
diverse organization of their small genomes presented us here with many
illustrative cases for making conclusions. However, one needs to be patient in
order to span that diversity. We must dig through a lot of material in order to
interpret correctly even such simple data as nucleotide counts. Luckily, there are
plenty of good examples provided by nature (and genome repositories) for us to
test our conjectures.
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QUESTIONS

(1) For the skew diagrams shown in Figures 6.3a and b, consider a hypothetical large inversion
between the coordinates 40% and 60%. What would the resulting diagrams look like?

(2) Now, consider a second, subsequent inversion between the very same coordinates and
draw the resulting diagram. What if that second inversion instead took place between the
coordinates of 30% and 70%?

(3) Following the logic of the examples in the previous two questions, how can you explain
the arrangement of the large colored stripes, designated h and b in the diagrams
corresponding to the two strains in Figure 6.8?

REFERENCES

[1] A. C. Frank and J. R. Lobry. Asymmetric substitution patterns: A review of possible
underlying mutational or selective mechanisms. Gene, 238: 65–77, 1999.

[2] E. Chargaff. Chemical specificity of nucleic acids and mechanism of their enzymatic
degradation. Experientia, 6: 201–240, 1950.

[3] H. J. Lin and, E. Chargaff. On the denaturation of deoxyribonucleic acid. II. Effects of
concentration. Biochim. Biophys. Acta, 145: 398–409, 1967.

[4] C. I. Wu and N. Maeda. Inequality in mutation rates of the two strands of DNA. Nature,
327: 169–170, 1987.

[5] J. R. Lobry. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol. Biol.
Evol., 13: 660–665, 1996.

[6] A. Grigoriev. Analysing genomes with cumulative skew diagrams. Nucleic Acids Res., 26:
2286–2290, 1998.

[7] A. Grigoriev. Genome arithmetic. Science, 281: 1923a, 1998.
[8] A. Grigoriev. Strand-specific compositional asymmetries in dsDNA viruses. Virus Res., 60:

1–19, 1999.



CHAPTER SEVEN

Modeling regulatory motifs

Sridhar Hannenhalli

Biological processes are mediated by specific interactions between cellular molecules (DNA,
RNA, proteins, etc.). The molecular identification mark, or signature, required for precise and
specific interactions between various biomolecules is not always clear, a comprehensive
knowledge of which is critical not only for a mechanistic understanding of these interactions
but also for therapeutic interventions of these processes. The biological problem we will
address here, stated in general terms, is: how do biomolecules accurately identify their binding
partners in an extremely crowded cellular environment? An important class of cellular
interactions concerns the recognition of specific DNA sites by various DNA binding proteins,
e.g. transcription factors (TF). Precisely how the TFs recognize their DNA binding sites with
high fidelity is an active area of research. While a detailed treatment of this question covers
several areas of investigation, we will focus on aspects of the TF–DNA recognition signal that
is encoded in the DNA binding site itself. In this chapter we will summarize a number of
approaches to model DNA sequence signatures recognized by transcription factor proteins.

1 Introduction

Most biological processes critically depend on specific interactions between

biomolecules. A key question in biology is how, in the overly crowded cellular

environment, these various interactions are accompished with high fidelity. Evidence

suggests highly developed mechanisms for trafficking, addressing, and recognizing

biomolecules within a cell. For instance, brewer’s yeast (Saccharomyces cerevisiae)

feeds on galactose, among other sugars. The yeast needs a mechanisms to sense the

presence of galactose in its environment and in response, turn on specific biological

Bioinformatics for Biologists, ed. P. Pevzner and R. Shamir. Published by Cambridge University Press.
C© Cambridge University Press 2011.
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processes to harness galactose. In the presence of galactose, transcriptional regulator

protein GAL4 binds to a specific DNA sequence upstream of several genes, most

notably GAL2, involved in galactose metabolism [1]. This entire process, from the

sensing of galactose to transmitting information down the signal cascade that culmi-

nates in the binding of GAL4 to the GAL2 gene’s regulatory sequence and metaboliz-

ing galactose, requires many specific interactions between different types of molecules

including DNA, RNA, and proteins.

As another example, consider the well-studied JAK-STAT signal transduction path-

way which plays a critical role in cell fate decision and immune response in humans.

Much like galactose metabolism in yeast, the JAK-STAT system involves sensing

specific chemicals outside the cell, transmitting this information across the cell mem-

brane down to the regulatory regions of specific genes, to activate the response system

[2]. One can think of such signaling pathways as a relay involving specific interac-

tions starting with the interaction between extracellular chemicals and cell-membrane

receptors, culminating in the interaction between transcription factors and DNA in

gene regulatory sequences. Questions concerning the specificity of interaction between

biomolecules are open in most contexts and are areas of active research.

The problem of interaction specificity could be resolved from first principles if

we had two pieces of information, namely the location of an interaction partner and

certain identifying features of the partner. For instance, if you were to plan a meeting

with a stranger in a large city, you would need to know the approximate meeting

location (e.g. corner of 6th and Broad), as well as certain identifying features of this

person (e.g. red polka dot suit). A parallel in the cellular environment could be a

trans-membrane (location) protein with amino acid sequence HHRHK near the amino

terminus (identifying feature). In this example, the identifying feature could also be

expressed as a stretch of five positively charged and largely hydrophobic residues.

Alternatively, one of the interacting proteins may have a structural feature (the key)

which fits a complementary structure on another protein (the lock). These examples

provide three different ways of representing the identifying feature of the interacting

partner, or in other words, these examples are different “models” of the interaction

specificity. Based on the different models one can surmise that the task of modeling

substrate specificity can be extremely difficult, especially in the realm of proteins.

Indeed, the task is complex even for the much simpler case in which the substrate is a

nucleic acid molecule (DNA or RNA). While the general principles are common to both

proteins and nucleic acids, for the sake of simplicity, we will restrict the exposition

to nucleic acids hereafter. In particular, we will discuss the issue of modeling the

DNA sites recognized and bound by transcription factors (TF), i.e. transcription factor

binding sites (TFBS). To orient the reader, we next provide a brief introduction to

transcriptional regulation.
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Figure 7.1 Transcription factor proteins (filled ellipses) interact with binding sites (filled
rectangles) in the relative vicinity of a gene transcript (black rectangle). The transcription
factor binding sites can either be proximal to the transcript (within a few thousand
nucleotides) or far (several hundred thousand nucleotides). The interactions between
transcription factors is aided by other adaptor proteins. The DNA-bound transcription
factors interact with polymerase to regulate transcription.

How much, at what time, and where within an organism any gene product is pro-

duced is precisely regulated, and is critical to maintaining all life processes. While the

overall regulation of a gene product is executed at various levels – including splicing,

mRNA stability, export from nucleus to cytoplasm and translation – much of this

regulation is accomplished at the level of transcription. Transcriptional regulation is a

fundamental cellular process, and aberrations in this process underlie many diseases

[3]. For example, mutations in the Factor IX protein is known to cause hemophilia B.

Additionally, mutations in the regulatory region immediately upstream of Factor IX

gene can disrupt the binding of specific TF, which in turn dysregulates the transcription

of the gene, thus leading to hemophilia [3]. In eukaryotes, transcriptional regulation

is orchestrated by numerous TF proteins. For the most part, TFs regulate gene tran-

scription by binding to specific short DNA sequences in the relative vicinity of the

transcription start site of the target gene, and through interactions with each other as

well as with the polymerase enzyme. See Figure 7.1 for a schematic.

Precise and specific interaction between the TF and its cognate DNA binding site

is a critical aspect of transcriptional regulation. What is the identifying characteristic

of the DNA sites recognized by a TF protein? This question remains an open and

important one in modern biology. The specific TF–DNA interaction is determined not

only by the DNA sequence but also by a number of additional cellular factors. A full

description of these determinants is beyond the scope of this chapter. Here we focus on

the aspect of TF–DNA interaction that is encoded in the sequence of the DNA binding

site itself.
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In particular, we will focus on models of TF binding sites. Given several instances

of experimentally determined binding sites for a TF, a model is a succinct quantitative

description of the known binding sites, which not only may provide mechanistic insights

into TF–DNA interaction, but also helps identify novel binding sites. Although we have

focused our discussion only on TF binding sites, the discussion applies to any DNA

signal such as splice sites, polyA sites, and indeed more generally to signals in amino

acid sequences. Finally, the signal encoded in the DNA binding site provides only part

of the information required for specific interactions with the DNA binding protein. We

will conclude with a discussion of additional hallmarks of functional binding sites that

can be exploited specifically to identify functional TF binding sites in the genome.

2 Experimental determination of binding sites

In this section we will briefly summarize the experimental techniques used to determine

the DNA binding sites for a specific TF. The sequences obtained from these experiments

are then used to construct a model of TF binding. For a detailed review on this topic

we refer the reader to [4]. The experimental approaches to binding site determination

can be classified as in vitro and in vivo.

The common in vitro techniques include Systematic Evolution of Ligands by EXpo-

nential enrichment (SELEX) [5] and protein-binding DNA microarrays [6]. SELEX

works as follows. One begins by synthesizing a large library consisting of randomly

generated oligonucleotides of fixed length. The solution containing the oligonu-

cleotides is exposed to the TF of interest. Some of the oligonucleotides bind to the TF.

The oligomers that are bound by the TF can be separated from the rest (although not

perfectly) and a new solution is prepared that is enriched for the bound oligomers. This

process of binding to the TF and separating out the bound oligomers is repeated mul-

tiple times and in every new round the experimental conditions are varied so that the

increasingly stronger binding between the TF and oligomers is favored. Multiple rounds

of selection with increasing stringency for the binding results in a solution enriched

for oligonucleotides that bind to the TF with high affinity. These oligonucleotides are

then cloned and sequenced. In a related experimental techniuqe of protein-binding

DNA microarray, the DNA oligomers are immobilized on a glass surface to which a

flourescent-labeled TF is exposed. The specific oligomers that bind to the TF of interest

are detected through optical signal processing [6]. This approach obviates the need

for multiple rounds of enrichment as in SELEX, as well as the need for cloning and

sequencing. By their nature, the in vitro capture the protein–DNA binding in purified

form and in isolation, independent of the other cellular determinants of the binding.
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In vivo identification of binding sites is accomplished by two common techniques –

ChIP-chip and ChIP-seq. Both approaches require obtaining the nuclear DNA bound

by the TF of interest, followed by DNA digestion, which leaves the TF attached to

small stretches of DNA, and then using specific antibody to fish out the TF along with

the stretch of DNA bound to it. In the ChIP-chip (Chromatin immunoprecipitation

followed by microarray hybridization), the bound DNA is hybridized against a glass

array that contains a large set of sequences corresponding to various genomic locations.

Thus, the array elements that hybridize to the TF-bound DNA automatically provide

the information on the genomic location where the TF binds. In the second technique –

ChIP-seq (ChIP followed by high-throughput sequencing) – the microarray hybridiza-

tion step is replaced by direct sequencing of the TF-bound DNA. The sequences are

then mapped to the genome based on sequence similarity. In each of these approaches

the TF-bound region is detected with varying resolution, and additional techniques are

applied to more precisely map the boundaries of the TF binding sites.

Experimentally determined binding sites are compiled in various databases, most

notably TRANSFAC [7] and JASPAR [8]. TRANSFAC is a licensed database which

currently includes binding sites for over 1,000 TFs gleaned from the experimental

literature. Each individual binding site is assigned a quality score corresponding to

the strength of experimental evidence. JASPAR is a freely accessible resource which

includes information on ∼150 TFs, also curated from experimental literature, and is

based on a more stringent set of criteria as compared to TRANSFAC.

3 Consensus

For the rest of the chapter, we will assume that for a given TF we are provided

a set of binding sites of a fixed length, and we will focus on the task of model-

ing these known sites. Therefore, for a transcription factor F , assume that we are

given N examples of K bases long DNA sequences bound by F . Denote the N

sequences as X1, X2, . . . , X N . Denote the nucleotide base at position j of sequence

Xi by Xi, j , where Xi, j ∈ {A, C, G, T }. The DNA sequence characteristics that are

critical for the protein–DNA interaction have both biological and computational

implications. These characteristics should determine the representation of binding

specificity. Consider Example 7.1a in which we are provided with 10 experimentally

determined binding sites for the yeast TF Leu3 [9], and each site is 10 nucleotides

long.
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Example 7.1.
(a)

1 2 3 4 5 6 7 8 9 10

X1 C C G G T A C C G G

X2 C C T G T A C C G G

X3 C C G C T A C C G G

X4 C C G G A A C C G G

X5 G C G G T A C C G G

X6 C C G T T A C C G G

X7 C C G C A A C C G G

X8 C C T G A A C C G G

X9 G C G G T A A C G G

X10 C C G C T A C A G G

(b)

1 2 3 4 5 6 7 8 9 10

A 0.0 0.0 0.0 0.0 0.3 1.0 0.1 0.1 0.0 0.0

C 0.8 1.0 0.0 0.3 0.0 0.0 0.9 0.9 0.0 0.0

G 0.2 0.0 0.8 0.6 0.0 0.0 0.0 0.0 1.0 1.0

T 0.0 0.0 0.2 0.1 0.7 0.0 0.0 0.0 0.0 0.0

(c)

2

1bi
ts

0
5′ 1 2 3 9 104 5 6 7 8

A simple and common approach to summarize these known binding sites is called

the consensus representation in which we create a consensus string of length K and

place in position j the consensus nucleotide which occurs with the highest frequency

at position j in N binding sites. In Example 7.1a, for instance, at position 3 there are

8 Gs and 2 T s. Thus the consensus at position 3 is G. The consensus sequence of

these 10 known examples of binding sites is thus CCGGT ACCGG. Note that the

consensus sequence happens to be the same sequence as X1.

More formally, given N binding sites, each of length K , let Nx, j be the number

of binding sites sites having nucleotide x at position j , where x ∈ {A, C, G, T } and
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1 ≤ j ≤ K . The normalized frequency of nucleotide x at position j is denoted by

fx, j = (Nx, j )/N . Clearly,∑
x∈{A,C,G,T }

fx, j = 1. (7.1)

The consensus sequence of these N binding sites is defined as the K -long nucleotide

sequence C1C2 · · · CK , in which C j is the nucleotide x that maximizes fx, j . The con-

sensus at each position in Example 7.1a is unambiguously defined. However, consider

a case where at some position there are 4 Cs, 5 Gs, 1 A and 0 T . In this case, assigning

a G as the consensus ignores the fact that nucleotide C is almost as likely as G. To

address this ambiguity one may use letter S at this position of the consensus string

where S represents strong bases C and G. Similarly, nucleotides A and G (purines)

together are represented by letter R. There is an International Union of Pure and

Applied Chemistry (IUPAC) letter code to denote each combination of nucleotides and

which is used to represent consensus in general [10].

Although quite useful for many practical situations, the consensus representation

is restrictive as it systematically ignores the rare bases at each position, which might

represent biologically important instances of binding sites. Next we discuss the Position

Weight Matrix representation of binding sites that addresses this specific shortcoming

of the consensus model.

4 Position Weight Matrices

The Position Weight Matrix (PWM) is currently the most common representation

of TF binding sites. Unlike the consensus approach, a PWM captures all observed

bases at each position. In its simplest form, a PWM is a probability matrix with 4

rows corresponding to the 4 nucleotide bases and K columns corresponding to each

position in the binding site. We will refer to rows 1 through 4 interchangeably as rows

A, C, G, T , respectively. The entry corresponding to the j th column (position) and

x th row (base) is fx, j , defined above as the frequency of x at position j among the

binding sites. The PWM corresponding to the binding sites in Example 7.1a is shown

in 7.1b.

Note that if there is an insufficient number of known binding sites, i.e. if N is

relatively small, then a particular nucleotide base may not be observed at a position.

This would result in fx, j = 0, which can be interpreted to imply that x is prohibited

at position j , even though we know that this is simply due to insufficient sampling of

sites and not because of a functional impossibility. A typical solution to deal with this

situation is to correct for potentially unobserved data by adding a prior (also known as
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pseudo count) to the observed nucleotide counts before computing the frequencies. A

simple approach is to add a count of 1 to each observed count, also called the Laplace

prior. If a Laplace prior is used in Example 7.1a, then the counts in the first column

become (1, 9, 3, 1) for (A, C, G, T), and the first column of the PWM in Example

7.1b becomes (0.071, 0.644, 0.214, 0.071). Formally, under the Laplace prior, the

frequencies are fx, j = (Nx, j + 1)/(N + 4).

There is a quantitative property of a PWM that corresponds to its usefulness in

modeling the TF–DNA binding preference. For instance, if the known binding sites

for a TF are highly dissimilar to each other, then there is very little knowledge to be

gained about the general binding preference. More specifcially, consider a particular

column j of a PWM. If each of the 4 nucleotides is equally likely to be observed

at that position, i.e. if fx, j = 0.25, for each nucleotide base x , then this column

conveys no information regarding the binding preference of the TF under considera-

tion. This intuitive notion of information contained in position j of a PWM can be

quantified formally using the Information Content, which is measured in bits and is

defined as

I j = 2 +
∑

x∈{A,C,G,T }
fx, j log2( fx, j ). (7.2)

Note that in the most informative case, when exactly one of the nucleotides, say A,

is observed at a position with f A, j = 1, fC, j = 0, fG, j = 0, fT, j = 0, then I j achieves

its maximum value of 2 bits.1 In the other extreme, when all nucleotides are equally

likely and fx, j = 0.25 ∀x ∈ {A, C, G, T }, then I j achieves its minimum value of 0

bits [11]. One can verify that any other value of probabilities yields a positive infor-

mation. Example 7.1c shows the Logo representation of the motif in Example 7.1b

depicting the information content at each position. The x-axis enumerates the bind-

ing site positions and the y-axis indicates the information content. The height of

each base corresponds to its relative frequency. The figure was generated using the

Weblogo tool at weblogo.berkeley.edu. For a more detailed discussion on information

content and another relative measure called Relative entropy, the reader is referred

to [12].

While the PWM is a simple, intuitive, and the most commonly used model of TF–

DNA interaction, its main drawback is that it assumes independence among different

positions in the binding site. Specifically, the preference for a nucleotide at one posi-

tion has no bearing on the nucleotide preferences at another position. Consider the

hypothetical Example 7.2 below which has six binding sites, each four nucleotides

long.

1 Here, the value of 0log20 is approximated to be 0.
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Example 7.2.

X1 C G G G

X2 C G T G

X3 C G G C

X4 A T G G

X5 A T G G

X6 A T G T

In the first column, nucleotides, C and A are equally likely, while in the second

column nucleotides G and T are equally likely. Based on this information and assuming

independence between these two columns, one would infer that the two binding sites

CGGG and CTGG are equally preferred. However, it is more likely that when there

is a C at the first position a G is preferred in the second position, and when there is

an A at the first position a T is preferred in the second position. In other words, the

first and second positions are not independent. A direct experimental measurement of

such dependence is laborious. Two specific experimental studies that infer dependence

between positions in binding sites can be found in [13] for bacterial Mnt repressor

binding sites and in [14] for Egr1 transcription factor binding sites.

5 Higher-order PWM

In Example 7.2, there is likely to be dependence between the first two positions. In

this case the preferred binding sites can be better modeled, and thus better predicted,

if we consider the first two nucleotides together. For instance, CG and AT are the most

likely dinucleotides at the first two positions. In general, if we want to incorporate

possible dependencies between nucleotides at every pair of adjacent positions, we can

extend the single nucleotide PWM with 4 rows and K columns to a dinucleotide

PWM with 16 rows corresponding to all 16 nucleotide combinations and K − 1

columns corresponding to all dinucleotide positions. Therefore, in the first column

of Example 7.2, the CG and AT dinucleotides will have large frequency values, each

“close” to 0.5 each,2 and all other 14 dinucleotides will have low values, “close” to

zero. This dinucleotide-based PWM has also been referred to as the Position Weight

Array [15, 16]. One can extend the Position Weight Array to capture even higher-order

dependencies, say among L consecutive nucleotides. This corresponds to enumerating

at every position of the binding site the L nucleotides-long sequences starting at the

2 The probabilities will be “close” to 0.5, as opposed to being exactly 0.5, if we add small pseudocounts for the
unobserved dinucleotides.
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position among all binding sites, i.e. from positions 1 through L , positions 2 through

L + 1, and so on till positions K − L + 1 through K . This results in a PWM with

4L rows (corresponding to all possible K -long sequences) and K − L + 1 columns

for any L ≥ 1, where L represents the number of adjacent nucleotides considered

together. This model is equivalent to a Markov Model of order L − 1, which provides

the probability of observing a nucleotide at any position based on the previous L − 1

nucleotides. See Figure 7.3b for an example of a first-order Markov Model. The Markov

Model is a general statistical tool and is often used to model a variety of molecular

sequences.

The main limitation of these higher-order PWMs is a lack of sufficient data, i.e. small

values of N . For instance, we cannot reliably infer the preference for a dinucleotide

among the 16 possible choices based on only 6 sequences, as in Example 7.2. Moreover,

high-order PWMs are still limited in that they do not directly capture the dependence

between non-adjacent nucleotide positions, for instance between positions 1 and 3,

independent of position 2. In theory, this can be remedied by explictly enumerating

nucleotide combinations for various combinations of positions, although such models

suffer from insufficient data to a much greater extent than higher-order PWM models.

In the next section we will discuss richer models of TF–DNA binding preferences that

attempt to maximize the information captured from the data.

6 Maximum dependence decomposition

The Maximum Dependence Decomposition (MDD) approach, proposed in Genscan

[16], explicitly estimates the extent to which the nucleotide at position j depends on the

nucleotide at position i . Specifically, MDD estimates the extent to which the nucleotide

at position j depends on whether the nucleotide at position i is the consensus (most

frequent) nucleotide for that position or a non-consensus nucleotide. For each i all

binding site sequences are divided into two groups, Ci and Ci , depending on whether

the nucleotide at position i is the consensus or a non-consensus base, respectively.

Within each group the nucleotide frequencies are computed at every position j . For a

given position j , the two sets of frequencies are compared using the χ2 statistic [17].

If position j is independent of position i , then we expect the two sets of nucleotide fre-

quencies to be fairly similar; however, if the two sets of frequencies differ significantly

from each other, it would suggest that nucleotide preference at position j depends on

the nucleotide at position i . Let f A, fC , fG , and fT be the normalized frequencies

(number of each base divided by the total number of sequences) of the four bases at

position j among the sequences in Ci . Let N be the total number of sequences in Ci . If
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the four bases were distributed identically in the two sets of sequences Ci and Ci , then

we would expect the number of the four bases at position j among the sequences in Ci

to be N ∗ f A, N ∗ fC , N ∗ fG , and N ∗ fT . Let NA, NC , NG , and NT be the observed

number of the four bases at position j among the sequences in Ci . In this context, the

χ2 statistic is defined as:

(N ∗ f A − NA)2

N ∗ f A
+ (N ∗ fC − NC )2

N ∗ fC
+ (N ∗ fG − NG)2

N ∗ fG
+ (N ∗ fT − NT )2

N ∗ fT
(7.3)

The greater the difference in the two sets of nucleotide frequencies, the higher the

value of χ2 statistic. If the statistic indicates a significant difference3 between the two

frequency distributions then the position j is said to depend on position i . For example,

for a set of 20 sequences, if position 1 includes 12 As and 8 Gs, then the consensus C1

is A. Now for the 12 sequences in which the nucleotide at position 1 is an A, assume

that at position 2, 8 have a C and 4 have a T. On the other hand, for the 8 sequences in

which the nucleotide at position 1 is a G, at position 2, 7 have a T and 1 has a C. For

the sequences with C1 = A, the counts for (A, C, G, T) at position 2 are (0, 8, 0, 4), and

for the other 8 sequences the nucleotide counts at position 2 are (0, 1, 0, 7). Intuitively,

the two sets of counts look very different from each other, and the χ2 statistic formally

quantifies this intuition.

Denote the χ2 statistic quantifying the dependence of position j on position i as

χ2( j | i). The MDD approach proceeds iteratively as follows.

1 Compute Si = ∑
j 
=i χ2( j, i) to capture the total dependence on position i .

2 Among all K positions, select position i with the maximum value of Si , and partition

all sequences into two parts based on whether they have Ci or Ci at position i .

3 Repeat steps 1 and 2 separately for each of the two sets of sequences obtained in

step 2.

4 Stop if there is no significant dependence, or if there is an insufficient number4 of

sequences in the current subset. In either case, construct a standard PWM for the

remaining subset of sequences.

Figure 7.2a illustrates the MDD modeling procedure. The above procedure decom-

poses the entire binding site data set into a tree-like structure. To test whether a given

sequence X fits the model, as illustrated in Figure 7.2b, one proceeds down the tree,

3 If there is no real difference between the two frequency distributions then the χ2 statistic is expected to follow
the so-called χ2 distribution. By comparing the computed χ2 value to the expected distrbution, one can
compute the probability that the two distributions are identical. This probability is called the P-value. If the
P-value is small, say below 5%, then we can say that the two distributions are significantly different.

4 We leave this purposefully vague, as there is no formal rule to define this. Essentially, if the number of
remaining sequences is small, say below 5, then it does not pay to further partition them.
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(a) Modeling (b) ScoringAACGTG
AGGCTG

AGCTTT

TACGTG
CACGGT

GATGGG

AACGTG CACGTG
TGGGTG

GACTTG

AGGCTG

AACGTG

AACGTG AAGGTG
AGGCTG

AATGTG

AGCCTG

AACGTG

Insufficient
data

PWM1 PWM2

Insufficient
dependence

Position 3 has non-consensus base.
Follow right subtree.

Arrived at a leaf. Score X using PWM2

Position 1 has consensus base ‘A’.
Follow left subtree.

X = AAGGTG

Figure 7.2 The figure, adapted from [16], illustrates the maximal dependency decomposition
(MDD) procedure. (a) Modeling. Starting with all binding sites, maximum dependency is
detected for position 1 with consensus “A.” The sites are then partitioned based on whether or
not the nucleotide at position 1 is an “A.” Among the sites with “A” in the first position,
maximum dependency is detected for position 3 with consensus “C.” The sites are further
partitioned based on whether or not the nucleotide at position 3 is a “C.” The two partitions
are not partitioned any further, however, because of either insufficient data or insufficient
dependency. The entire MDD model is built following this procedure. (b) Scoring. Given a
sequence X , one proceeds down the left subtree because the first base of X is an “A,”
followed by the right subtree because the third base is not a “C.” At this stage, because a
leaf is encountered, X is scored using PWM2, corresponding to the current leaf.

where a decision is made at each internal branching point based on whether a spe-

cific position of X is a consensus base or not, guiding the search down the appropriate

descendent branches of the tree. The search eventually stops at a leaf which corresponds

to a PWM, the one that “best” represents the sequence X .
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Unlike the Position Weight Array mentioned above, which assumes dependence

between every pair of adjacent positions, MDD is not restricted to adjacent positions

and explicitly evaluates whether there is a statistical dependence between any two

positions. However, it is easy to see that MDD requires a large number of sequences.

7 Modeling and detecting arbitrary dependencies

In this section we will discuss a general Bayesian approach developed in [18] to model

dependencies between arbitrary pairs of binding site positions. In this approach, each

of the K binding site positions may depend on any arbitrary set of other positions.

This scenario can be best illustrated using a graph structure. Consider a network with

K nodes (s1, s2, · · · , sK ) corresponding to the positions i through K , where xi is a

random variable representing the nucleotide at position i . We draw an arrow (a directed

edge) from node si to s j if the nucleotide at position j depends on the nucleotide at

position i ; dependence can be determined using the χ2 statistic. Figure 7.3 shows a

few dependency structures for K = 4. Consider the simplest case, with 4 nodes and no

edges depicted in Figure 7.3a, such that each of the nucleotides is independent, which

is precisely the PWM model. In probabilistic terms, the probability of observing a

specific binding site x1x2x3x4 is the product of the four independent probabilities,

i.e. P(x1x2x3x4) = P(x1)P(x2)P(x3)P(x4), where P(xi ) is the entry in the PWM at

column i , for nucleotide xi .

Now consider the dependency shown in Figure 7.3b with three edges. The

first position is independent of any other position, while every other posi-

tion depends on the previous position. In probabilistic terms, P(x1x2x3x4) =
P(x1)P(x2|x1)P(x3|x2)P(x4|x3), where the notation P(u|v) represents the probability

of u conditional on the value of v. This is precisely the first-order Markov Model and is

similar to the Weighted Array Matrix model mentioned above. The probability of each

nucleotide at the first position is calculated in a fashion identical to that of a PWM.

The conditional probabilities can then be derived from the given set of sites in a similar

fashion. For instance, if among 10 sequences that have an A at the first position, three

have a C at the second position, then P(x2 = C | x1 = A) = 0.3.

Figure 7.3c depicts a more complex dependency structure among the binding site

positions. In this case position 2 depends on position 1. Position 3 depends on both

positions 1 and 4, while positions 1 and 4 are independent of any other positions. We

can write out the probability of observing a DNA sequence x1x2x3x4 as P(x1x2x3x4) =
P(x1)P(x2 | x1)P(x3 | x1, x4)P(x4). Similar to the previous case, we can compute the

conditional probability P(x3|x1, x4) by computing the fraction of different nucleotides

at position 3 for various combinations of dinucleotides at positions 1 and 4. Finally,
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S3

T

S3

S4
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Figure 7.3 The figure illustrates a few possible dependency structures between the binding
site positions (adapted from [18]).

Figure 7.3d illustrates a scenario where the nucleotides at the four bases are independent

of each other but depend on an extrinsic variable T . For instance, certain TF are known

to recognize distinct classes of motifs and the variable T may represent the motif class

which in turn determines the nucleotide preferences at the four positions. It is not

difficult to see that any arbitrary dependency structure defines a unique model, and

given a model, one can precisely estimate the probability of observing a DNA sequence.

However, there are a large number of possible dependency structures, and determining

all possible dependency structures is not at all trivial. Incidentally, this problem is also

encountered in other areas of computational biology, notably when inferring regulatory

networks from gene expression data. The issue of searching for the optimal model is

discussed in more detail in chapter 16 on biological network inference.

8 Searching for novel binding sites

The eventual goal of any model of TF–DNA binding is to efficiently and accurately

assess whether an arbitrary sequence is likely to bind to the TF, and more generally,

to identify potential binding site locations along a long stretch of DNA, possibly an

entire genome. For consensus models, the search entails a simple scan of the DNA

sequences for a perfect match, or a match with a limited number of mismatches to the

consensus sequence. However, in the case of PWMs, detecting the binding sites is less

straightforward.
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8.1 A PWM-based search for binding sites
Essentially each sequence is assigned a “match” score which represents quantita-

tively its similarity to the PWM. For a PWM, a scoring function can simply be the

product of nucleotide frequencies at each position. For instance, the match score for

CCGGTACCGG (sequence X1 in Example 7.1a) and using the PWM in Example 7.1b

can be computed as 0.8 × 1.0 × 0.8 × 0.6 × 0.7 × 1.0 × 0.9 × 0.9 × 1.0 × 1.0 =
0.22. This quantity represents the probability that the sequence confers to, or is gen-

erated by, the PWM. Such a raw score is interpreted (is this score sufficiently large

to indicate a match of the PWM to the binding site?) in the context of a specific

background. For instance, a PWM in which, at every position, the bases “C” or “G”

have the highest probability, is expected to achieve a high raw score while searching a

region of the genome that is composed mostly of “C” and “G”. In this case, an even

higher raw score should be required.

Various software tools employ different strategies to select a threshold for the raw

score. The MATCH software adapted from [19] employs the following strategy. Let

r denote the raw match score for a PWM for a binding site. The raw score r is

first converted into a percentile score p. If the minimum and maximum achievable

scores by the PWM are rmin and rmax , then p = (r − rmin)/(rmax − rmin). MATCH

then searches an input sequence for matches whose percentile score surpasses a user-

defined threshold. The default thresholds are based on a carefully chosen background

to optimize either the false-negative rate, the false-positive rate, or the sum of both

types of errors. Another strategy is to convert the raw score into a P-value, which

estimates the random expectation of observing the raw score (or higher). For instance,

Levy and Hannenhalli use a direct empirical approach. For a PWM, raw scores for

every position on the entire genome (of the species of interest) on either strand are

computed. This empirically estimated background distribution of raw scores provides

a direct way to compute the frequency with which a score of at least r is expected by

chance. If a score of at least r is achieved Q times, then the P-value of this score is

estimated as Q/L , where L is the total length of the genome including both strands

[20]. The other models that incorporate higher-order dependency between positions

can be used to assign a score to novel DNA sequences analogously, and will not be

discussed here.

8.2 A graph-based approach to binding site prediction
In Example 7.1a, it is intuitive that the first sequence X1 = CCGGT ACCGG should

have a high-affinity interaction with the TF, since it is not only known to bind to the

TF, but it is also the consensus sequence. Given a model, we can compute a score

for a sequence indicative of the binding probability or binding affinity. We discussed



7 Modeling regulatory motifs 141

above how this score is computed for a PWM. While in Example 7.1a, the consensus

sequence happens to be among one of the sequences known to bind the TF, this is

often not the case. More problematic and perhaps counterintuitive is the fact that with

probabilistic models, such as PWM, a sequence that is not among the known examples

may score better than a sequence known to bind the TF. Naughton et al. provide a

simple illustrative example [21]. Consider three known examples of binding sites for

a TF – AAA, AAA, and AGG. If we construct a PWM based on these three sequences,

the score for sequence AAG would be 1.0 × 0.67 × 0.33 = 0.22 while the score for

AGG will be 1.0 × 0.33 × 0.33 = 0.11. Interestingly, the sequence AAG, which is not

known to bind to the TF, has a higher score than the sequence AGG, which is known to

bind the TF. The problem is that in order to score a sequence, the probabilistic models

use “average” properties of the known sites and not the known sites themselves.

To address this shortcoming of probabilistic models, Naughton et al. proposed a

graph-based approach for scoring a sequence directly from the known binding sites

without building an explicit model. The intuition behind their approach is as follows.

Assume that we wish to score a sequence X using N distinct sequences known to

bind to the TF. Each of the N sequences additively contributes to the score for X , and

the individual score contribution is a product of two components. The first component

is proportional to the similarity between the sequences X and Y , where Y is one of

the N sequences. The second component is proportional to the number of times Y

occurs among the known binding sites. Thus the score contribution is high if there is

a sequence very similar to X among the known sequences and there are many known

instances of this sequence. The details of the precise function used can be found in [21].

9 Additional hallmarks of functional TF binding sites

TF binding sites are typically short (5–15 bp) and various binding sites for a TF

can vary substantially. The DNA binding site sequence alone often does not contain

sufficient information to explain the specificity with which a TF binds to its cognate

binding sites. Thus, on the one hand, there are numerous locations in a genome that

harbor DNA sequences strongly matching the TF–DNA binding model, and yet do not

seem to bind to the TF in experiments; on the other hand, there are numerous locations

experimentally known to be bound to a TF and yet which do not contain any sequences

that could be predicted by the TF–DNA interaction model. Therefore, the match to a

TF–DNA model, such as a PWM, is only one of the many determinants of functional

TF–DNA interactions. There are several other hallmarks of TF binding sites that can

be employed to improve the accuracy of binding site identification. Below we briefly
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mention two such features. Additional determinants of functional TF–DNA interaction

are discussed below.

9.1 Evolutionary conservation
Consider a region of the genome that encodes for an important organismal function.

Any mutation in this region affecting the specific function may be deleterious to the

fitness of the organism and should be purged by evolution. In other words, such a

region is likely to be evolving under purifying selection and will thus be conserved

across species during evolution. The same principle applies to regulatory regions of

the genome that harbor TF binding sites. Phylogenetic footprints are non-protein-

coding regions of the genome that are highly conserved and are much more likely to

be evolving under purifying selection [22]. Due to the recent availability of numer-

ous alignable genome sequences, phylogenetic footprinting has been widely used to

identify binding sites [20, 23, 24]. For a detailed review of phylogenetic footprinting

we refer the reader to [25]. Although using evolutionary conservation is an effective

way to reduce the false-positive rate in binding site prediction, exclusive reliance on

conservation is limited for two reasons. First, conserved regions may sometimes be

functionally neutral and thus may not harbor an important binding site [26]. Second,

several functional binding sites are known not to be conserved, as shown by several

studies [27, 28].

9.2 Modular interactions between TFs
Eukaryotic gene regulatory programs achieve complexity through combinatorial inter-

actions among TF. For instance, the expressions of some of the Drosophila genes

involved in development are regulated through combinatorial interactions among five

TF proteins, Bcd, Cad, Hb, Kr, and Kni [29]. Consistent with the interactions between

the TFs, the binding sites for these TF occur in clusters in the regulatory regions of the

genes [30]. It seems that binding sites that occur in clusters are more likely to be func-

tional. Thus the prediction of individual binding sites can be improved when subsumed

within a search for binding site clusters. Several tools have been developed to detect

significant clusters of binding sites in the genome [31, 32]. A cluster of functionally

interacting binding sites, typically with multiple instances in the genome (presumably

regulating several functionally related genes) is referred to as a cis-regulatory module

(CRM) [33, 34]. Knowledge of CRMs can aid in accurate identification of individual

binding sites [35]. Numerous computational approaches have been proposed to iden-

tify CRMs [25, 36–38]. Studies suggest that the binding of a TF to a binding site may

depend on the presence or absence of binding sites for other TFs in the relative vicinity

[39, 40]. Thus binding sites for a TF can be predicted with greater accuracy if one takes



7 Modeling regulatory motifs 143

into account the presence/absence of binding sites of specific interacting TF. Binding

models have been proposed to exploit such sequence contexts [41, 42].

DISCUSSION

The general problem of accurately identifying transcription factor binding sites is
important for a mechanistic understanding of transcriptional regulation. In this
chapter we have focused on the narrower problem of modeling the TF–DNA
interaction based only on a set of experimentally determined binding site
sequences without any other information about the genomic or cellular context.
An ideal model should be such that (1) the true DNA binding sites fit the model
very well, i.e. the model is sensitive, and (2) the DNA sequences that are known
not to bind the TF should not fit the model, i.e. the model is specific. Moreover,
the model should be biologically interpretable. The PWM model, while being
simple, does not capture potential dependencies between binding site positions.
A full dependence model, on the other hand, is difficult to estimate reliably based
only on a small number of exemplar binding sites. Despite the efforts and
advances made over the last several years our ability to predict binding sites on a
genome scale remains unsatisfactory.

Ultimately, any sequence-based model of TF–DNA interaction does not capture
the inherently dynamic cellular state. For instance, how tightly the DNA at any
given location on the chromosome is packaged on the nucleosomes, critically
determines the TF–DNA interaction and, more generally, transcriptional
regulation [43, 44]. It is possible that even a high-affinity binding site may not
bind the TF, if the binding site location is tightly wrapped around a nucleosome,
which are the basic unit of DNA packaging. Narlikar et al. were able to
significantly improve the de novo motif discovery accuracy by exploiting
nucleosome occupancy [45]. Histone modifications can also help identify the
condition-specific chromatin structure and can help improve the genome-wide
identification of binding sites. Recent application of high-throughput
technologies, most notably ChIP-seq [46], have been used to generate
genome-wide maps of histone modifications [47–49]. Lastly, post-translational
modification states of TF proteins can critically alter the TF–DNA interaction [50].
However, how these modifications affect TF–DNA interaction is not well
understood. Improvements in computational modeling of TF–DNA interaction is
likely to come from a better biological understanding of these various
determinants of TF–DNA interactions coupled with the development of tools that
can integrate the heterogeneous information.
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QUESTIONS

(1) Consider the following probability matrix representing the DNA binding specificity of a
transcription factor.

1 2 3 4 5
A 0.01 0.10 0.97 0.95 0.50
C 0.03 0.05 0.01 0.01 0.10
G 0.95 0.05 0.01 0.03 0.10
T 0.01 0.80 0.01 0.01 0.30

Calculate the information content (IC) for position 3 and position 5. Briefly explain what
information content means and why there is such a difference in this value between
positions 3 and 5. In other words, what characteristic of position 5 makes its IC so low,
while the IC of position 3 is so high?

(2) What is the consensus binding site for the transcription factor in problem (1)?

(3) Based on the consensus sequence, can you find the most likely binding sites for the TF in
the following DNA sequence: ACCAAGTAGATTACTT? Consider both the forward and
reverse strands. Now which of these sites is the most likely if you consider the probability
matrix above?

(4) Analogous to transcription factors, which bind to DNA, RNA binding proteins (RBP) bind to
specific RNA molecules, such as mRNA. They regulate critical aspects of
post-transcriptional processing of the mRNA. Much like TF–DNA interaction, RBP–RNA
interaction is believed to be specific. What aspects of the target mRNA are likely to be
important for specific RBP–RNA interaction?
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CHAPTER EIGHT

How does the influenza virus
jump from animals to humans?

Haixu Tang

As shown by the 2009 Swine Flu outbreak, the influenza epidemics are often caused by
human-adapted influenza viruses originally infecting other animals. The influenza viruses
infect host cells through the specific interaction between the viral hemagglutinin protein and
the sugar molecules attached to the host cell membrane (called glycans). The molecular
mechanism of the host switch for Avian influenza viruses was thus believed to be related to
the mutations that occurred in the viral hemagglutinin protein that changed its binding
specificity from avian-specific glyans to human-specific glycans. This theory, however, is not
fully consistent with the epidemic observations of several influenza strains. I will introduce
the bioinformatics approaches to the analysis of glycan array experiments that revealed the
glycan structural pattern recognized by the hemagglutinin from viruses with different host
specificities. The glycan motif finding algorithm adopted here is an extension of the commonly
used protein/DNA sequence motif finding algorithms, which works for the trees (representing
glycan structures) rather than strings (as protein or DNA sequences).

1 Introduction

The recent outbreak of “swine flu” is not the first flu pandemic (i.e. the spread of an

infectious disease in the human population across a large region) in human history.

Three worldwide outbreaks of influenza flu occurred in the twentieth century, in 1918,

1957, and 1968, respectively. “Spanish flu” is known as the most deadly natural

Bioinformatics for Biologists, ed. P. Pevzner and R. Shamir. Published by Cambridge University Press.
C© Cambridge University Press 2011.
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Figure 8.1 A schematic illustration of (a) the structure of the influenza virus; and (b) the
infection process of the influenza virus. The virus contains a lipid bilayer attached by two kinds
of membrane proteins, the hemagglutinin and the neuraminidase, and an inner layer of matrix
proteins. The virus infects epithelial cells of the host respiratory systems in six steps (see text
for details).

disaster, which swept around the world in 1918 and killed about 50–100 million people.

Although the number of deaths in the subsequent pandemics were less significant –

it is estimated that the 1957 and 1968 pandemics killed approximately one million

people each, whereas the 2009 pandemic killed more than 18,000 people worldwide

according to the statistics of the World Health Organization – the death rate remains

similar and is comparable to that of the seasonal flu. It was not until the 1930s that the

cause of the influenza was found to be a virus. To date, three types of influenza virus

were discovered (A, B, and C, respectively), among which influenza A is responsible

for the regular influenza outbreaks.

All influenza viruses belong to one family of RNA viruses (Orthomyxoviridae) that

has RNA (ribonucleic acid) as their genetic materials. The influenza virion is a globular

particle (Figure 8.1a) with a diameter of about 100 nm. The surface of the virion is

protected by a lipid bilayer, the same component as the plasma membrane, which is

derived from the plasma membrane of its host cell. Two kinds of membrane proteins

are attached on the viral surface, i.e. ∼500 copies of hemagglutinin (also called the

“H” protein) and ∼100 copies of neuraminidase (also called the “N” protein). The

influenza virion carries eight RNA molecules consisting of genes encoding the H and

N proteins, the matrix proteins and the nucleoproteins. Within the lipid bilayer, the

RNA molecules were further protected by another layer of matrix proteins and many

copies of nucleoproteins associated with them.
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The influenza virus infects epithelial cells of the host respiratory systems. The whole

infection process involves six steps (Figure 8.1b).

1 The virus binds to the epithelial cells through the interaction between the

hemagglutinin and the glycans1 attached to glycoproteins on the host cell surface.

2 The virus is swallowed up by the host cell (a process called endocytosis).

3 Fusion of the viral membrane with the vesicle membrane releases the content of the

virus into the cytosol, and the viral RNAs enter the nucleus of the cell where the

RNAs will be reproduced.

4 Fresh copies of viral RNAs enter the cytosol.

5 Some viral RNA molecules in the cytosol act as messenger RNA to be translated into

the proteins for the new virus particles, while other viral RNA molecules are

assembled into the core of the new virus particles.

6 The new virus buds off from the membrane of the host cell, aided by the

neuraminidase encoded by the virus RNAs.

It is clear that the two viral surface proteins, the hemagglutinin and the neu-

raminidase, play essential roles in the infection process of the influenza viruses. The

hemagglutinin acts as the “initiator” that recognizes and captures the target cells,

whereas neuraminidase acts as the “terminator” that releases the fresh virus from

the host cells. Not surprisingly, these two proteins became the primary targets for the

design of antiviral drugs and effective vaccines against influenza.2 For the same reason,

influenza viruses are usually classified into subtypes based on the sequence divergence

of their hemagglutinin (H) and neuraminidase (N) genes. A total of 16 types of H

genes and 9 types of N genes are known to date. A majority of severe pandemics of

human influenza were caused by the H1N1 (including the 2009 “Swine Flu”) and the

H3N2 viruses.

Since the discovery of influenza viruses, thousands of influenza virus strains have

been collected. The analysis of their genetic materials (i.e. the RNA molecules) has

shown that the flu pandemics occur when the virus acquires a new variant of the genes

encoding the H or N proteins. Where did these “new” variants come from? In many

cases, domestic animals appear to be the source. In fact, influenza viruses can infect not

only humans, but also domestic animals such as pigs (causing “Swine Flu”), horses,

chickens, ducks, and some wild birds (causing “Avian Flu”). Although most influenza

viruses can only infect either humans or another animal, some animal flu viruses have

jumped from animals to humans, which has caused several major flu outbreaks. The

1 The carbohydrates (sugars) linked to other molecules (such as proteins or lipids) are called glycans in
biochemistry.

2 For instance, the antiviral drugs Oseltamivir (trade name Tamiflu) and Zanamivir (trade name Relenza) that
slow down the spread of influenza are both effective inhibitors of the neuraminidase.
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H2 viruses that appeared in 1957 and the H3 viruses that appeared in 1968 originated

from Avian Flu viruses, whereas the 2009 “Swine Flu” pandemic was caused by a new

H1N1 influenza virus that circulated in pigs.

Now a fundamental biological problem arises: how can influenza viruses jump from

animals to humans? As we mentioned briefly above, the molecular mechanism for

influenza viruses to recognize its appropriate target cell involves the specific interac-

tion between the hemagglutinin and glycans on the surface of the host cell. Hence,

a straightforward model may explain the host switch of influenza viruses, which is

based on three hypotheses: (1) structurally distinct glycans are present on the surface

of animal and human cells; (2) hemagglutinin proteins can recognize these subtle

structural distinctions; and (3) some mutations occurring on hemagglutinin of animal

viruses result in the switch of its binding specificity from animal glycans to human

glycans. To study the validity of this model and, more importantly, to character-

ize the subtle glycan structural features that can be recognized by influenza viruses,

the glycan array technique is used to assay the binding affinity of hemagglutinins

on various glycan structures. In this chapter, we will introduce the bioinformatics

concept for the analysis of glycan array experimental data in an attempt to eluci-

date the distinct features that are recognized by human viruses but not by animal

viruses.

The rest of the chapter is organized as follows. We will first introduce the molecular

basis of the host switch of influenza viruses, then we will briefly describe the glycan

array experiments for characterizing hemagglutinin binding specificity, and finally we

will introduce the computational approach to the glycan array data analysis. We will

conclude the tutorial by discussing some specific aspects of the bioinformatics topics

related to glycobiology.

2 Host switch of influenza: molecular mechanisms

Although DNA and proteins have garnered most of the attention in modern molecular

cell biology, other classes of biomolecules are no less important. Carbohydrates (or

sugars) were well studied in biochemistry for their roles as the structural molecules and

in cellular metabolisms. Recent advancement in the research of glycans, a field called

glycobiology, however, has concentrated on their relatively new roles as signaling

molecules. All cells carry a dense coating of covalently linked sugar chains (called

glycans or oligosaccharides) on their outer surface, which modulate a large variety of

interactions between the cell and other cells in a multicellular organism, or between

organisms, e.g. between host and viral or parasite cells. The initial step for the infection
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Figure 8.2 The structure of glycans. (a) The cyclic structure of a glucose; (b) the structure of a
tetraglucose, consisting of four glucoses with a bifurcation branching of 1–3 and 1–6 linkages;
(c) the tree representation of the tetraglucose.

of influenza viruses, in which hemagglutinin proteins on the virus surface interact

with the glycans on the host cell surface, is an example of these cell communication

processes.

2.1 Diversity of glycan structures
The study of the biological functions of glycans has advanced relatively slower than

the study of proteins or nucleic acids, for two reasons. First, glycans exhibit more

complex structures than proteins and nucleic acids, and the complexity is not due

to their compositions. There are only a limited number of building blocks, called

monosaccharides, in glycans, of which those common ones found in higher animal

glycans are listed in Table 2.1. Each monosaccharide is a small carbohydrate, and

contains six carbon atoms that can be numbered as the organic chemistry nomenclature

such that the hemiacetal carbon is referred to as C1 (Figure 8.2a). Two monosaccharides

react and form a glycosidic bond between the C1 group of one monosaccharide and

the alcohol group of the other while releasing a water molecule. Depending on which

alcohol group participates in the reaction, there are four different types of glycosidic

bonds, called 1–2, 1–3, 1–4, and 1–6 linkages.3 A monosaccharide can be linked

to more than one monosaccharide at a time (by covalent bonds called glycosidic

bonds) and form branching structures. As a result, a general form of a glycan can

be represented by a labeled tree,4 in which each monosaccharide is represented by

3 Since the reductive carbon atom in sialic acids are labeled as the second carbon, three possible linkages of
sialic acid residues are classified as 2–3, 2–4, 2–6 linkages, respectively.

4 Mathematically, a tree is a graph with no cycles, in which each node has zero or more children nodes and at
most one parent. The nodes having no child are called the leaf nodes. The only node in a tree with zero parent
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Table 8.1 Symbolic representations of common monosaccharides

Symbols1 Monosaccharide residues and abbreviations

� Hexoses, e.g. galactose (Gal), glucose (Glc), and mannose (Man)
� N-acetylhexosamines (HexNAc), e.g. N-acetylglucosamine (GlcNAc)

and N-acetylegalactosamine (GalNAc)
� Sialic acids, e.g. N-acetylneuraminic acid (Neu5Ac)

and N-glycolylneuraminic acid (Neu5Gc)
Uronic acids, e.g. iduronic acid (IdoA) and glucuronic acid (GlcA)

� Deoxyhexoses, e.g. fucose (Fuc)
� Pentoses, e.g. xylose (Xyl)

1Each symbol represents a class of monosaccharides with the same atomic compositions (i.e. the same
chemical formula) but different chemical configurations, referred to as the isomers, e.g. the galactose
and glucose. Isomers are distinguished by different colors in the glycan representation (as shown in
Figure 8.4).

a symbol (see Table 2.1 for the list of such symbols) and each glycosidic bond is

represented by an edge. The number of branches of the tree is bounded by 4, because

there are at most 4 glycosidic bonds that can be formed by one monosaccharide. In

higher animals, there are usually two branches (two glycosidic bonds). We say the

structure of a glycan is known when not only its monosaccharide sequence but also its

whole branching structure and all linkage types are characterized. Second, glycans are

synthesized through a template-free and step-wise process. The complex glycosylation

machinery that assembles monosaccharides into oligosaccharides consists of hundreds

of proteins. More importantly, to carry out biological functions, glycans are often

attached to other classes of biomolecules, such as proteins and lipids, forming different

glycoconjugates. In higher animals, the synthetic glycoconjugates can be classified

according to the biomolecules they are attached to. A glycoprotein is a glycoconjugate

in which one or more glycans are covalently attached to a protein through N-linked

or O-linked glycosylations (Figure 8.3a). Most glycoproteins are anchored on the

plasma membrane, with the glycans oriented toward the extracellular side. Many of

these glycans act as the specific receptors for various kinds of viruses, bacteria, and

parasites, including the influenza viruses.

is called the root node. The depth of a node is defined as the length (i.e. the number of edges) of the path from
the node to root. A subtree of a tree is defined as the tree consisting of a subset of connected nodes in the
original tree. A complete subtree is then defined as a subtree consisting of a node and all its descendents
(children, children of children, etc.). Both the nodes and edges in a tree can be labeled. For example, the nodes
in a glycan tree are labeled by the monosaccharide residues, and the edges in a glycan tree are labeled by the
linkage type.
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Figure 8.3 Glycan receptors and the host switch of influenza viruses. (a) Schematic
representions of glycans attached to proteins. The N -linked (or N -) glycosylation occurs at an
asparagine residue within the sequence pattern of Asn-X-ser/Thr (NXS/T), where N can be
any amino acid residue but proline. All N -glycans share a common pentasaccharide core
structure (with two GlcNAc and three Man residues), and can be further divided into three
main classes: high-mannose-type, complex-type, and hybrid-type, based on the
monosaccharide sequences extended from the core structure. The extended sequence of the
high-mannose-type N -glycans contains only mannose residues in all their branches, whereas
the extended sequence of the complex-type N -glycans alternates between GlcNAc and Gal
residues (called the lactosamine repeats) and terminates with sialic acid or fucose residues,
and the hybrid-type N -glycans contain some branches of high-mannose-type extended
sequences, and some branches of complex-type extended sequences. The O -glycan (or O -)
glycosylation occurs via the linkage between a GalNAc and a serine or threonine residue on
the protein and can be extended into a large variety of oligosaccharides. The complex- or
hybrid-types of N -glycans and O -glycans may contain sialic acids or fucoses as terminal
residues, referred to as the sialylated and fucosylated glycans, respectively. The sialylated
glycans are the ligands of the influenza hemagglutinins. (b) Molecular mechanisms for the host
switch of influenza virus strains. The hemagglutinin of human influenza viruses have a binding
preference for 2–6 linked sialylated glycans, whereas the hemagglutinin of avian viruses have
a binding preference for 2–3 linked sialylated glycans. The respiratory epithelial cells of pigs
express both 2–3 linked and 2–6 linked sialylated glycans, and thus can be infected by both
human and avian influenza viruses. A new pandemic influenza strain might arise from the mix
of the gene segments from the avian and human viruses that infect the same host (e.g. pigs).
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2.2 Molecular basis of the host specificity of influenza viruses
A notable property of the glycans attached to the animal cell membranes is that

they are of great microheterogeneity, i.e. there exist many different glycans on the

cell surface, of which some share similar structures. Accordingly, unlike the protein–

protein interaction that involves two or more specific proteins, glycan binding proteins

often interact with a class of glycans that have a common structural pattern. The

influenza hemagglutinin is a well-studied viral glycan-binding protein that specifi-

cally binds to sialylated glycans. The specificity of this interaction for different sub-

types of influenza viruses varies substantially. Human influenza viruses bind only

to cells expressing glycans of 2–6 linked sialic acids (to galactoses), whereas the

other animal influenza viruses also bind to 2–3 linked sialic acids. Further investi-

gation shows that this linkage preference is caused by a single mutation occurring

in the hemagglutinin gene. This finding seems to be consistent with many obser-

vations related to the host specificity and switches of influenza viruses. Indeed, the

2–6 linked sialylated glycans are abundant in human respiratory epithelia, whereas

the respiratory epithelia of the birds mainly express 2–3 linked sialylated glycans.

The respiratory epithelia of some animals (e.g. pig) have receptors with both 2–3

linked and 2–6 linked sialylated glycans. According to the vessel theory of influenza

pandemics (Figure 8.3b), pigs can act as the intermediate host on which the genetic

materials from human and avian viruses are mixed, resulting in new pandemic strains

that retain the ability to transmit within the human population, but are sufficiently

different to reduce the efficiency of the host’s immune response. It was hypothe-

sized that both the 1957 H2N2 and the 1968 H3N2 pandemic strains arose from this

mechanism.

The correlation between the transmission efficiency and the hemagglutinin–glycan

binding specificity was observed on some influenza virus strains (e.g. the highly

pathogenic human 1918 viruses). However, several cases were found to be incon-

sistent with this theory. For instance, switching hemagglutinin binding specificity

of one human influenza virus (SC18) from 2–6 to 2–3 resulted in a virus strain

(AV18) that is supposed to be transmissable in birds according to the theory, but is

not in practice. Two experimentally collected H1N1 strains both show a mixed 2–

3/2–6 binding specificity; however, one strain (NY18) does not transmit efficiently

in the human population, whereas the other (Tx91) does. Finally, some chimeric

H1N1 strains with increased binding affinity to 2–6 linked sialylated glycans actu-

ally spread less efficiently than the original strains in human and pig populations.

All these results suggest a more complicated scenario of the host switch of influenza

viruses.
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Figure 8.4 Elucidation of glycan structural determinants for a glycan binding protein (e.g.
the viral hemagglutinin) through the glycan array technology. To characterize the binding
specificity of a glycan binding protein (GBP) to various glycans, a library of synthetic glycans
are printed onto the surface of a microarray slide, on which each spot represents a specific
glycan. The GBP–glycan interaction can then be detected by incubating the slides with labeled
GBPs (e.g. the hemagglutinins), and identifying the glycans corresponding to spots with
signals. The identified glycans that potentially bind to the GBP can be used to characterize
the glycan structural pattern recognized by the GBP, known as the glycan motif finding
problem.

2.3 Profiling of hemagglutinin–glycan interaction by using
glycan arrays
Until recently, the analysis of specificity of influenza hemagglutinins relied on virus-

based assays, such as the competetive binding of glycoproteins (associated with gly-

cans of great microheterogeneity) to the immobilized viruses. Although these assays

demonstrated that the specificity of viral hemagglutinins is more complex than the

recognition of 2–3 or 2–6 linked glycans, they were relatively low-throughput and

were only optimized to certain virus strains. The development of glycan array technol-

ogy enabled the study of the interaction between glycan binding proteins and glycans

in a high-throughput manner. A glycan array comprises a library of synthetic (thus

structurally known) glycans that are automatically printed on a glass slide (Figure 8.4).

To investigate the specificity of influenza hemagglutinins, one can design a library

of hundreds of glycans containing sialic acids, with various linkage, such as 2–3 or

2–6 linked. Therefore, the array provide an opportunity to simultaneously assay the

interaction between hemagglutinins and hundreds of its potential glycan ligands. The

subset of glycans can then be detected that interact with hemagglutinin proteins on

a specific influenza virus strain (Figure 8.4). Note that the interaction assay can be
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conducted by using either the whole virus or recombinant hemagglutinin, which can

be detected by fluorescent antibodies that bind to it.

Glycan array experiments report a group of structurally known glycans as the poten-

tial ligands of hemagglutinin proteins. The next question is what structural pattern these

glycans share that can be recognized by the hemagglutinin. For example, since we have

known the hemagglutinin proteins from a human influenza virus strain recognize 2–6

linked sialylated glycans, we anticipate that all detected glycans binding to human

viral hemagglutinin should contain 2–6 linked sialic acids as terminal residues. Our

expectation of the structural pattern actually goes beyond that. We want to investigate,

besides the specifically linked sialic acid, whether there exist other common structure

patterns among the detected glycan ligands. This leads to the formulation of the glycan

motif binding problem, which attempts to identify a common structural pattern from a

given set of glycans.

3 The glycan motif finding problem

The glycan motif finding problem resembles the well-studied DNA sequence motif

finding problem. A DNA motif is defined as a DNA sequence pattern of some biological

significance, e.g. the binding sites of a transcription factor (TF). The pattern is usually

short (i.e. 5–20 bp long) and is known to recur in the regulatory regions of a number of

genes. Given a set of DNA sequences (regulatory regions), the motif finding attempts

to find overrepresented motifs. The input to the DNA motif finding problem can be

retrieved from various resources, ranging from the comparative analysis of multiple

genomes (i.e. the orthologous gene clusters) to the high-throughput genomics data

from a single genome, such as gene microarray analysis (to find co-expressed genes

that are likely co-regulated by the same TFs), Chromatin Immunoprecipitation (ChIP)

(to find the genomic segment that a TF binds to), or protein binding arrays.

Depending on the representation of the DNA motifs, DNA motif finding algorithms

can be roughly divided into three categories. The word-based methods assume that

the DNA motif is a short sequence of some fixed length l (also called an l-tuple, e.g.

TATAAA) that recur in the input sequences as the exact same copy. The consensus

methods use a similar assumption, except that they allow some variation from the

“consensus” motif. Finally, the profile methods employ sequence profiles (also called

position weight matrix, PWM) to represent DNA motifs, which is a 4 × l matrix (l =
the motif length) with each column representing the frequency of four nucleotides

at each motif position. The word-based methods are simple to implement. For a

fixed word length l, one needs to test whether each l-tuple in the input sequence
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is overrepresented or not. In contrast, consensus-based and profile-based methods

need to apply sophisticated probabilistic algorithms (for details see Chapter 7). The

overrepresentation of an l-tuple can be measured by a simple statistical test on the

counts of the l-tuple in the DNA sequences. Given N input DNA sequences of the

same length L , denote n as the number of sequences containing a specific l-tuple.

What is the probability for an l-tuple to be observed in a random DNA sequence of

length L? Since there are in total 4l l-tuples in DNA sequences and they occur at

equal probability in a random DNA sequence, each l-tuple has the equal probability of

(L − l + 1)/4l , and the expected number of sequences containing the l-tuple, denoted

as ne, is then (N × (L − l + 1))/4l . The greater n is than ne, the more probable that

an l-tuple is “overrepresented” in the input DNA sequences. The significance of the

l-tuple can be measured by its probability of being observed n times in N random

DNA sequences, which can be derived by using probability theory, or using simulation

experiments [2].

Below, we introduce a similar approach to the glycan motif finding problem, in

which we assume the glycan motif (the structural pattern recognized by GBPs, e.g. the

hemagglutinin) is a treelet. Given a labeled tree, an l-treelet is a tree with l nodes that

is a subgraph of the tree.5 The glycan motif finding problem is then transformed to the

search for overrepresented treelets in a given set of N glycan trees that can be solved

by a treelet counting approach (Figure 8.5a). in two independent steps:

1 enumerate all l-treelets in each of N input glycan trees and count the number of trees

(among N input glycan trees) that contain it as a subgraph, defined as the l-treelet

occurence;

2 determine if an l-treelet is overrepresented in the set of input glycan trees based on its

occurrence.

The enumeration of all l-treelets in a glycan tree can be achieved by a recursive

algorithm. Denote S(T, l) as the set of l-treelets in a tree T . In some special cases

(or the boundary cases), S(T, l) can be obtained directly. For instance, if T has fewer

than l nodes, there is no l-treelet in T , or S(T, l) = ∅, where ∅ designates an empty

set; if T has exactly l nodes, it has one and only one l-treelet that is the whole

tree T , or S(T, l) = T ; and finally, because the 1-treelet should contain only one

node, S(T, 1) should be the set of nodes in T . However, in general, S(T, l) needs

to be obtained recursively. Consider S(T, l, v) as the set of l-treelets in T rooted

by the node v. Obviously, S(T, l) is the union of S(T, l, v) for all nodes in T (or

S(T, l) = ∪v∈T S(T, l, v)). Assume the root of T (denoted as r ) has n direct children

5 A treelet is a subgraph of a tree if and only if both the topology and the node/edge labels match. Notably, a
treelet of a tree is formally defined in graph theory as a subtree of tree (see Figure 8.5a for examples).
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Figure 8.5 Glycan motif finding problem. (a) Enumerating 4-treelets in a complex-type
N -glycan. All 4-treelets appear once in the glycan tree. The highlighted 4-treelet was found to
be overrepresented in the human viral hemagglutinin binding glycans detected by glycan array
experiments. (b) Determining if a treelet is overrepresented in a positive (+) sample of glycans
rather than a negative (−) sample, derived from a glycan array experiment (see text for
details). The occurrence of a treelet in a sample is defined as the number of glycans in the
sample containing this treelet. A treelet is overrepresented if it occurs more frequently in the
positive sample than in the negative sample, which can be conducted by constructing a 2 × 2
contigency table. For a specific treelet, the first row (denoted as +) in the table displays its
occurrences in the positive and negative samples, respectively, whereas the second row
(denoted as −) displays the number of glycans in the positive and negative samples that do
not contain it. Intuitively, the treelet shown in the top table is more likely overrepresented
in the positive sample than the treelet shown in the bottom table. The significance of the
overrepresentation for a treelet can be obtained by a Fisher’s exact test, as described in the
text.

(n ≤ 4 for glycan trees) (denoted as v1, v2, ..., vn). We denote the complete subtrees

of T that are rooted by vi (i = 1, 2, ..., n) as Tvi · Any l-treelet of T is either rooted by

r or is an l-treelet in one of the complete subtrees Tvi · If we have obtained the set of

k-treelets for each of these complete subtrees (for k = 1, 2, ..., l), i.e. S(Tvi , k), we can

then construct the set of l-treelets of T by the union of several non-intersected sets:

(1) the set of l-treelets in Tvi , i.e. S(Tvi , l); and (2) the set of l-treelet rooted by r . The

second set can be computed by enumerating the possible combination of n treelets with

a total number of l − 1 nodes, each rooted by one vi (thus a member of S(Tvi , k, vi )).

The recursion continues until it reaches a boundary case.

After obtaining all l-treelets in a given set of glycan trees, the next step is to

determine, for each of these treelets, if it occurs in a significantly large subset of trees.
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At a first glance, we can devise a method similar to the one we use to compute the

significance of the DNA l-tuples. For each of the input trees i , we can also count the

total number of l-treelets it contains, denoted as ki .6 If we assume the input glycan

tree is randomly chosen, then the expected number of trees containing any l-treelet is the

same and equal to (
∑

i ki )/t l , where t is the total number of monosaccharides observed

in the glycan trees (≈6). Unfortunately, this approach has a strong drawback. Glycans

have regular structures and cannot be assumed to be random sequences, because they

are synthesized through a series of reactions. For example, all glycans share the same

core structure consisting of five monosaccharide residues (Figure 8.3a). As a result,

overrepresented l-treelets detected by this method may correspond to the recurrent

glycan structures rather than the structural pattern recognized by hemagglutinin.

To address this issue, we need to adopt a different approach. Consider all M glycans

printed on the glycan array. If an l-treelet is not overrepresented in the glycans binding

to hemagglutinin, it should occur in a proportional number of glycans in the set of

glycans binding to hemagglutinin and the set of glycans not binding to hemagglutinin

(Figure 8.5). To test whether a specific l-treelet is overrepresented in the first set in

comparison to the second, we can employ a Fisher’s exact test on a 2 × 2 contingency

table [3].7 Assume that there are N glycans detected to bind to hemagglutinin, and

M − N glycans not. For each l-treelet i , we count the number of glycans containing it

in these two sets, denoted as n+
i and n−

i , respectively. Then the four cells of the contin-

gency table are n+
i and n−

i (the first row), and N − n+
i and M − N − n−

i (the second

row). Fisher showed that, if the l-treelet is not overrepresented in the hemagglutinin-

binded glycans, the probability of obtaining these values follows a hypergeometric

distribution,

P =
M!

n+
i !n−

i !(N−n+
i )!(M−N−n−

i !)!

M!
(n+

i +n−
i )!(M−n+

i −n−
i )!

× M!
(M−N )!N !N

. (8.1)

Note that in the equation, the nominator computes the number of possible ways to

configure the M glycans into 4 groups so that each group consists of the number of

glycans as the number in the 4 cells in the 2 × 2 contingency table (i.e. n+
i , n−

i , N − n+
i ,

and M − N − n−
i , respectively), and the denominator computes the number of possible

ways to configure M glycans into 4 cells so that the sum of the numbers in two rows and

two columns are kept as the sums in the contingency table. The probability can be used

to measure the significance of an l-treelet – the treelet is significantly overrepresented

in the hemagglutinin-bound glycans if the probability is small (e.g. < 0.01).

6 Note that ki is determined not only by the number of nodes in the tree i , but also its topology. Therefore, ki

needs to be obtained for each input tree separately.
7 In statistics, a contingency table is used to display the frequency of two or more variables in a matrix format.
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The last question is how to choose an appropriate size of the treelet (i.e. l) to search

for. In fact, we can use different sizes, e.g. l = 2, 3, 4, ..., and report the overrepre-

sented l-treelet for each l. In practice, the search is limited to a certain size (e.g. ≤ 5

monosaccharide residues) because the hemagglutinin–glycan binding interface does

not likely extend beyond that size. In the bioinformatics studies of the glycan array

data, two glycan motifs were found to be overrepresented in the glycans binding to

human viral hemagglutinins, including the 2–6 linked disaccharide (Sia–Gal), and a

linear oligosaccharide of four residues (GlcNAc–Gal–GlcNAc–Gal) with specific link-

ages (as shown in Figure 8.5a). The first result is consistent with the known binding

preference of human influenza viruses, whereas the second is new and indicates that

human influenza viruses may prefer to bind to N -glycans containing a long branching

with more than one lactosamine repeat (GlcNAc–Gal). This finding led to a new model

for the host preference of influenza viruses through hemagglutinin–glycan interaction,

which has been also supported by other evidence [4].

DISCUSSION

A majority of important bioinformatics algorithms are developed to analyze
sequences because the two most important biomolecules, proteins and nucleic
acids, are linear molecules and can be represented as sequences. Glycans, on the
other hand, have branching structures and should be represented as labeled
trees. Nevertheless, many algorithms designed for proteins and nucleic acids can
be extended to the analysis of glycans.

QUESTIONS

(1) The host switch for influenza viruses is caused by the altered binding specificity of viral
hemagglutinin proteins, which, from an evolutionary perspective, is an effect of adaptive
selection on the viral hemagglutinin genes when the viruses jump from the population of
their original host (e.g. avian) to the population of a new host (e.g. human). To
characterize the adaptively selected residues on viral hemagglutinin proteins, we have
collected a set of viral hemagglutinin protein sequences (Figure 8.6a), some of which are
from avian viruses (cluster 1) and the others are from human viruses (cluster 2).
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(a) (b)

Figure 8.6 A schematic example for characterizing key residues involved in the alteration
of glycan binding specificity of viral hemagglutinin proteins. (a) A set of viral
hemagglutinin protein sequences are collected and multi-aligned. These sequences can be
partitioned into two clusters: the first two sequences are from avian viruses and the
remaining three sequences are from human viruses. (b) Each of the proteins is assayed for
human-specific glycans and its (average) binding affinity is measured. Note: the residues
within the conserved regions are highlighted in gray areas.

(a) Devise a method to predict the key amino acid residues involved in the binding
specificity alteration of viral hemagglutinin.

(b) Assume each of these proteins has been assayed by glycan array experiments to
human-specific glycans and its (average) binding affinity has been measured. Using
these data, devise a method to predict the key residues involved in the binding
specificity alteration.

(2) In order to elucidate the glycan pattern that a hemagglutinin protein recognizes, each
putative glycan motif (represented by an l-treelet) is evaluated to determine if it is
overrepresented in the glycans binding to hemagglutinin in comparison to the set of
glycans not binding to hemagglutinin by a Fisher’s exact test. This method can be extended
to characterize the glycan binding pattern of other glycan-binding proteins. However, some
glycan-binding proteins may recognize multiple (e.g. two) glycan motifs that are similar to
each other. In this case, any individual glycan motif may not show high statistical
significance when being evaluated using the statistical method described in this chapter.
Explain why this may happen, and devise a computational method to address this issue.

(3) Given two independent samples of observations, Wilcoxon’s rank-sum test is a
non-parametric statistical hypothesis test to assess if they have equally large (or small)
values [13]. To compute it, we first rank the observations from both samples together.
Then the rank-sum test U is defined as,

U = R1 − n1(n1 + 1)

2

where R1 is the sum of ranks of the observations in the first sample and n1 is the number
of observations in the first sample, respectively. Note, U can be equivalently defined on the
observations in the second sample (for details see [13]).
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In this chapter, when we evaluate the overrepresentation of glycan motifs, we assume
the glycans on the glycan array can be partitioned into two sets: one (positive) set of
glycans binding to hemagglutinin and the other (negative) set not binding to the
hemagglutinin. In practice, what we obtain from a glycan assay is the binding affinity
between each glycan on the array and the hemagglutinin, and the positive and negative
glycans are partitioned based on an empirical threshold: glycans with binding affinity
above the threshold are assigned to be positive, and the other glycans are assigned to be
negative. To avoid an arbitrary chosen threshold, devise a statistical method based on
Wilcoxon’s rank-sum to evaluate the overrepresentation of glycan motifs.

FURTHER READING
I recommend an excellent respective article by H. Nicholls [5] for those who are
interested in the biology of influenza viruses. Those who are interested in
glycobiology should refer to the encyclopedia of glycobiology, Essentials of
Glycobiology, by A. Varki et al. [6], or a more concise textbook, Introduction to
Glycobiology, by M. E. Taylor and K. Drickamer [7]. I skipped many details
regarding the diversity of the chemical structure of glycans (e.g. their
stereochemical configurations) that can be found in these books.

The rapid advancement of glycobiology benefited from the development of
high-throughput technologies, in particular, glycan array and mass spectrometry.
Mass spectrometry (MS) is a complementary high-throughput technology to
glycan array, and can be used to infer the composition and structure of glycans in
biological samples. To learn more about these techniques, one can refer to recent
reviews [8, 9].

The treelet counting approach introduced in this chapter for glycan array
data analysis was first developed by R. Sasisekharan and colleagues from
Massachusetts Institute of Technology [4]. More sophisticated algorithms for
pattern recognition in glycan structures were reviewed by K. Aoki-Kinoshita in
her recent book [10] and an advanced tutorial [11].

The binding preferences of influenza viral hemagglutinin are supported by
different analytical methodologies – the glycan array approach is just one of
them. For instance, MS analysis has shown a substantial diversity, as well as
predominant expression of long oligosaccharide branch (with multiple
lactosamine repeats) 2–6 linked sialylated glycans in the human upper respiratory
epithelial cells, which is consistent with the motif finding results from glycan
array data [4]. Another line of evidence was from the 3-dimensional structure
simulation of hemagglutinin–glycan interactions. A class of structural
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bioinformatics approach called molecular dynamics can be used to elucidate the
energy profile of hemagglutinin–glycan interaction, and thus characterize the
substructures of glycans (monosaccharide residues) that contribute to the binding
specificity. This kind of study can also predict the mutations in hemagglutinin that
are responsible for the change of its glycan binding preference [12].
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CHAPTER NINE

Genome rearrangements

Steffen Heber and Brian E. Howard

Genome rearrangements are one of the driving forces of evolution, and they are key events
in the development of many diseases. In this chapter, we focus on a selection of topics that
will provide undergraduate students in bioinformatics with an introduction to some of the key
aspects of genome rearrangements and the algorithms that have been developed for their
analysis. We do not attempt to provide a comprehensive overview of the history or the results
in this field. Our presentation is in many parts inspired by the textbook An Introduction to
Bioinformatics Algorithms by Neil Jones and Pavel Pevzner [1], by lectures from Anne Bergeron
[2] and Julia Mixtacki [3], and by several reviews of genome rearrangements and the
associated combinatorial and algorithmic topics [4–7]. We will begin with a brief review of the
basic biology related to this topic.

1 Review of basic biology

The genome of an organism encodes the blueprint for its proteins and ultimately deter-

mines that organism’s developmental and metabolic fate. Genetic information is stored

in double-stranded deoxyribonucleic acid (DNA) molecules. Each individual DNA

strand is a long sequence of the nucleotides adenine, cytosine, guanine, and thymine,

which are commonly referred to using the letters A, C, G, and T . In each strand,

the fifth carbon atom of each ribose molecule in the sugar–phosphate backbone is

attached to the third carbon atom of the next ribose molecule (Figure 9.1a). However,

the two strands are oriented in opposite directions. One strand proceeds in the forward,

Bioinformatics for Biologists, ed. P. Pevzner and R. Shamir. Published by Cambridge University Press.
C© Cambridge University Press 2011.
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5′ to 3′ direction, and the other one in reverse, from 3′ to 5′. Both strands are com-

plimentary in the sense that an A nucleotide in one strand pairs with a T nucleotide

in the other strand, and a G nucleotide in one strand pairs with a C nucleotide in the

other. Therefore, the nucleotide sequence in one strand determines a complementary

sequence in the other strand, and the two sequences are in reverse complementary

orientation.

Genomes are partitioned into organized structures called chromosomes (Figure

9.1b). A chromosome can either be linear or circular. Linear chromosomes have regions

of repetitive DNA at their ends called telomeres, which protect the chromosomes from

damage and from fusing to each other. Each chromosome contains multiple genes, or

stretches of DNA that are responsible for encoding proteins or functional RNAs. We

can label each gene with an orientation dependent on the strand (forward or reverse) on

which it is located. To simplify matters, we will assume that each gene appears exactly

once in the genome and that consecutive genes are well separated from one another

by an intergenic region. If we substitute integers for genes and encode the location of

a gene on either the forward or reverse strand by a sign, a chromosome can then be

represented as a linear or circular sequence of signed integers (Figure 9.1c). However,

in real genomes, several copies of a gene might sometimes exist, and genes can be

nested or overlap each other. In these cases, a more flexible genome representation is

required.

Even genomes of closely related individuals, for example parents and their chil-

dren, differ slightly from one another. These differences become more distinct if we

compare genomes from different species. A large portion of genetic differences are

caused by point mutations, in which only one nucleotide is changed at a time. Point

mutations include substitutions, where one nucleotide is exchanged for another, as well

as insertions and deletions, where individual nucleotides are added or removed.

In contrast to point mutations, genome rearrangements are mutations that affect

multiple nucleotides of a genome simultaneously. A genome rearrangement occurs

when one or two chromosomes break and the fragments are reassembled in a different

order. Here, we assume that breakpoints only occur between genes – since, in most

cases, a breakpoint inside a gene will compromise the gene function and cause the

affected organism to die. (Exceptions to this rule do exist.) The result of a genome

rearrangement is a new genome sequence that has a modified gene order, but which

does not differ from the original genome in nucleotide composition. Rearrangements

can cause dramatic differences in gene regulation and can have a strong effect on

the phenotype of an organism. Genome rearrangements are therefore of fundamental

importance for understanding chromosomal differences between organisms, and they

have been linked to important diseases, including cancer [8]. Figure 9.2 illustrates

some of the most common types of genome rearrangements.
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Figure 9.1 Basic biology. (a) Nucleotide base pairing and strand orientation result in reverse
complementary sequences. The “forward” direction is called the 5′ direction, and the reverse
direction is the 3′ direction. Each individual nucleotide also has a 5′ and 3′ end, and the 3′ end
of each consecutive nucleotide can only bind to the 5′ end of the next nucleotide. (b) Higher
levels of DNA organization. Figures 9.1a and 9.1b are taken, modified, and printed with the
permission of the National Human Genome Research Institute (NHGRI), artist Darryl Leja.
(c) Example of rearranged genomes (modified from [2]). Shown are part of the mitochondrial
genome of Homo sapiens (human) and Bombyx mori (silkworm). Each arrow represents a
single gene; for example, “CYTB” stands for cytochrome b. The direction of the arrow indicates
which strand, forward or reverse, the gene resides on. If we encode gene names by integers
and gene orientation by signs, we can represent the genome parts by signed permutations.
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Figure 9.2 Four important types of genome rearrangements: reversal, translocation between
chromosomes, and fusion and fission (special cases of translocation). The directions of the
large arrows indicate gene orientation on the forward or reverse strand.

Reversals (sometimes also called inversions) are one important type of genomic

rearrangement. A reversal occurs when a segment of a chromosome is excised and

then reinserted in the opposite direction with forward and reverse strands exchanged. As

a result, the gene order and orientation for any genes within this segment is reversed. In

Figure 9.1c you can observe the effect of reversals. For example, the segment containing

the genes RNS, RNL, and ND1 in the human mitochondrial genome appears reversed

in the mitochondrial genome of the silkworm. What other reversals can you find in this

example?

If we ignore signs and replace genes with characters, genome rearrangements are

similar to a familiar word puzzle: anagrams. An anagram is a word or phrase formed by

rearranging the characters of another word or phrase. For example, the phrase “eleven

plus two” can be rearranged into the new phrase “twelve plus one.” As with rearranged

genomes, the meaning of an anagram might be quite different from the original, for

example, “forty-five” can be rearranged into “over fifty.” To check if two phrases are

anagrams of each other, we can draw a character dot-plot, a matrix where the axes

are labeled by the phrases, and a dot is printed at position (i , j) if the i th character
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Figure 9.3 Dot-plot examples. (a) Character dot-plot of the anagram pair “stipend” and
“spend it.” (The space character is ignored.) (b) Genome dot-plot of human and mouse
X-chromosome.

of phrase one occurs at position j in phrase two (Figure 9.3). If the two phrases are

anagrams, and if no character occurs more than once, then there should be exactly one

dot in each column and row.

2 Distance metrics and the genome rearrangement
problem

Evolutionary changes such as point mutations and genome rearrangements can be

used to define a variety of useful distance metrics between sequences. For example,

assume that you are given two homologous gene sequences, A and B, that originate

from the same ancestral gene, C. (Genes in different organisms are called homologous

if they originate from the same gene in a common ancestor.) Using a given set of edit

operations, the minimum number of changes necessary to transform sequence A into

sequence B defines the edit distance, dedit, between A and B. Accordingly, the fewer

changes one needs to transform one sequence into the other, the more similar the two

sequences are.
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Figure 9.4 Edit distance. (a) Edit distances and the corresponding sequence changes.
(b) Evolutionary tree that uses a minimum number of point mutations (nucleotide change
G->T (red), A->T (blue), insertion + C (yellow), deletion − G (green)) to explain the data.
The sequences S4 and S5 are hypothetical because we cannot observe these ancestral
sequences.

Computing the edit distance using point mutations is similar to solving the popular

word puzzle where you are given a start word and a target word, and your goal is to

successively change, add, or delete characters until the target word is reached. Here is

an example for the pair “spices” and “lice”:

spices → slices → slice → lice.

In general, finding the minimum number of necessary transformations is a difficult

problem. Often, there are many possible alternative transformation sequences, for

example:

spices → spice → slice → lice.

Moreover, even if you are given a feasible transformation sequence, it may be difficult

to decide if this sequence is optimal.

Figure 9.4 shows a few examples of how edit distance can be computed for

related DNA sequences. In biology, assuming that the minimum number of changes

reflects the true evolutionary distance (parsimony assumption), the edit distance can be
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used to compute sequence alignments, and to infer evolutionary relationships among

species.

As with point mutations, biologists have used genome rearrangements for measur-

ing the similarity between genomes, and for reconstructing evolutionary relationships.

Dobzhansky and Sturtevant pioneered this type of research by analyzing reversals in

polytene chromosomes of the fruit fly Drosophila pseudoobscura [9]. Polytene chro-

mosomes often occur in the salivary glands of fly larvae. They originate from multiple

rounds of chromosome replication (without cell division) where the individual repli-

cated DNA molecules remain fused together. Having multiple genome copies in an

individual cell allows the larval tissue to increase the cell volume, and to have a higher

rate of transcription. The resulting giant chromosomes are much larger than normal

chromosomes and show a pattern of chromosomal bands that correlates with large

chromosomal regions. By comparing the chromosomal bands of giant chromosomes

with a light microscope, genome rearrangements can be detected; however, no infor-

mation about the orientation of genes or genomic markers can be inferred. Dobzhansky

and Sturtevant demonstrated that there are multiple reversals present in strains of flies

inhabiting different geographic regions, and that these reversals can be used to con-

struct a phylogeny of the analyzed fly strains [9]. Figure 9.5 shows a sketch of the

original data set and the corresponding phylogenetic relationships.

In order to infer the evolutionary tree displayed in Figure 9.5, Dobzhansky and

Sturtevant were faced with what computer scientists now call the genome rearrange-

ment problem: given a pair of genomes, find the shortest sequence of rearrangements

that transform one genome into the other. Similar to the edit distance defined above, this

minimum number of rearrangements also defines a distance metric between genomes,

and can therefore be used to infer phylogenetic relationships between species.

Dobzhansky and Sturtevant’s original data set consisted of only a few genetic loci,

but the recent availability of a large number of fully sequenced genomes gives us

access to hundreds of genes in hundreds of genomes. This causes serious problems.

Think about how long it would take you just to read 100 gene names aloud. How long

would it then take you to find a sequence of reversals that transforms one genome

with 100 genes into another genome? If you have found a reversal sequence, how

can you be sure the problem cannot be solved with fewer reversals? These chal-

lenges have motivated computer scientists to design algorithms for analyzing genome

rearrangement data, and, as a result, many different computational approaches now

exist. In the following, we will discuss several of these approaches, which vary

according to the distance metrics they use and the types of genomic operations they

allow, such as signed and unsigned reversals, translocations, and double-cut-and-join

operations.
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Figure 9.5 Dobzhansky’s data. (a) In chromosome three of Drosophila pseudoobscura
several genome rearrangements exist. For example, the Standard arrangement and the
Arrowhead arrangement differ by an inversion of the chromosomal segment 70–76,
highlighted in part (b) of this figure. This inversion results in a loop structure that is formed
during the pairing of homologous chromosomes in meiosis of Standard–Arrowhead
heterozygotes. (b) Configurations observed in the third chromosome in various inversion
heterozygotes. (c) Schematic representation of the pairing of chromosomes differing in a single
or a double inversion. Above: a single inversion; second from above: two independent
inversions. (d) Phylogeny of the gene arrangements in the third chromosome of Drosophila
pseudoobscura. Any two arrangements connected by an arrow in the diagram differ by a single
inversion. Figures are taken from [9] and printed with the permission of the Genetics Society of
America.
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3 Unsigned reversals

In a very simple version of the genome rearrangement problem, we will assume that

both genomes consist of the same set of genes, that we do not have any information

about the orientation of the genes, and that only reversals can occur. These assumptions

are motivated by Dobzhansky and Sturtevant’s experiment where, due to the limited

resolution of light microscopes, only the order of chromosomal markers could be

observed, but not their orientation. To formally represent the problem, and to make the

data more amenable to computational analysis, we encode the two genomes as permu-

tations of unsigned integers. Let us start with a toy example. Assume that you are given

the gene order of 6 genes along a chromosome in two fly species; for example π1 =
(1 5 3 2 4 6) in species 1 and π2 = (5 3 2 4 6 1) in species 2. Since, in this experi-

ment, the gene orientation cannot be observed, the encoding does not include a sign

(+ or −). Assuming that both genomes originated from a common ancestor but have

been modified by genome rearrangements, we would like to learn how to transform

gene order 1 into gene order 2 using a sequence of reversals since gene orientation is

unobservable, we will use unsigned reversals, which reverse the order of the affected

genes, but do not change their orientation. For example, in gene order π1, a reversal

of the interval delimited by genes 3 and 4 will result in the new gene order (1 5 4 2

3 6). To standardize the presentation, we rename the genes such that permutation π2

becomes the identity permutation, i.e. we replace:

5 → 1′ 3 → 2′ 2 → 3′ 4 → 4′ 6 → 5′ 1 → 6′.

After renaming, we obtain order π ′
1 = (6′ 1′ 2′ 3′ 4′ 5′) and order π ′

2 = (1′ 2′ 3′

4′ 5′ 6′). This procedure simplifies our problem without essentially changing it – the

label change can easily be reversed. Our original problem can now be stated as a

genome sorting problem: given an input permutation (π ′
1) find a minimum number of

reversals drev that transforms the input permutation into the identity permutation (π ′
2).

To simplify the presentation, we will drop “ ′ ” in the remainder of this discussion.

A simple, mechanistic procedure to find a sequence of reversals that can transform

any permutation, π , into the identity consists of iteratively locating the element, i , in

π and moving it via a reversal to its correct location, with i increasing from 1 to n − 1

(see Algorithm 1).1 In the following, π [ j] = i denotes that the element i is at position

j in π , and π • r (i, j) indicates an unsigned reversal of π [i ... j].

1 This and the subsequent algorithm BreakpointReversalSort were taken from the textbook An Introduction to
Bioinformatics Algorithms [1] and were first described in the seminal paper by John Kececioglu and David
Sankoff [10].
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For example, in the renamed π1 above, the element i = 6 is at position j = 1, so

π1[1] = 6.

Algorithm 1: GREEDYREVERSALSORT (π )
1 for i ← 1 to n – 1
2 j ← position of element i in π (i.e. π [ j] = i )
3 if j 
= i

4 π ← π • r (i, j)

5 output π

6 if π is the identity permutation
7 return

For the example above, this algorithm will result in the following sequence, where

the individual reversals have been underlined:

(6 1 2 3 4 5)→ (1 6 2 3 4 5)→ (1 2 6 3 4 5)→ (1 2 3 6 4 5)→ (1 2 3 4 6 5)→ (1 2 3 4 5 6).

For any pair of permutations π1 and π2, this procedure will always find a sequence

of reversals that transforms permutation π1 into permutation π2; however, it will not

always find the minimum number of reversals. In our example there exists a shorter

sequence of only two reversals:

(6 1 2 3 4 5) → (6 5 4 3 2 1) → (1 2 3 4 5 6). (9.1)

Is it possible to find an even shorter sequence of reversals? In this example, it is

easy to verify that there is no shorter solution. However, in general, determining if a

given rearrangement scenario is of minimum length is quite difficult. An exhaustive

search through all possible sequences of reversals will always find the solution of mini-

mum length, but due to the large search space and the corresponding running time, this

approach is not practical. You might think that maybe a better algorithm will do the job,

but it has been shown that the genome sorting problem is NP-hard [11]. This implies

that, so far, no one has found an algorithm that remains efficient for growing permu-

tation sizes, and that, unless P =NP, no such algorithm can exist. Unfortunately, many

computer scientists believe that P 
= NP. On the other hand, even if there is no efficient

way to compute an optimal solution, an approximation algorithm might still allow the

swift discovery of a useful, suboptimal solution. Trading exactness for efficient running

time, these algorithms are not guaranteed to find a shortest possible reversal sequence;

however, often it is possible to ensure that the resulting approximation is not too far

off from an optimal solution, and for many applications this might be good enough.

Later, we will describe such an algorithm (Algorithm 2: BreakpointReversalSort).

To find a lower bound for the number of reversals necessary for sorting a permuta-

tion, we extend the input permutations by the artificial elements 0 and n + 1 at either

end. You can interpret these markers as telomeres. In the extended permutation, we
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call a pair of neighboring elements adjacent if they occur consecutively in the tar-

get permutation, i.e. in our setting, if the elements correspond to consecutive integers.

(Remember that we assume that, after relabeling, the target permutation is the identity.)

Otherwise, the pair is called a breakpoint. The identity permutation is the only permu-

tation without breakpoints. Let b(π) denote the number of breakpoints in permutation

π . Since a single reversal can eliminate, at most, two breakpoints, we can derive a

simple lower bound for the minimum number of reversals necessary to sort an input

permutation π :

drev ≥
⌈

b(π)

2

⌉
(9.2)

where the ceiling function �x�, denotes the smallest integer greater than or equal to x .

In our example, this bound immediately answers the question of whether there is a

shorter transformation sequence than the one given in Equation (9.1). Since � b(π)
2 � = 2,

there cannot be any shorter transformation. You might be tempted to suggest a sorting

algorithm where every step removes two breakpoints; however, you will soon find

that there are permutations for which no single reversal will reduce the number of

breakpoints. For instance, try this example: (0 1 5 6 7 2 3 4 8 9).

Although it is not always possible to remove a breakpoint with a single reversal, we

can guarantee that within two reversals at least one breakpoint will be eliminated. This

can be shown by introducing the notion of strips: a strip is an interval between succes-

sive breakpoints. In the above example, we have the strips: [0, 1], [5, 6, 7], [2, 3, 4],

and [8, 9]. A strip is called decreasing if the elements in this interval occur in decreasing

order; otherwise, it is called increasing. Single element strips will be called decreasing,

except for the strips [0] and [n + 1], which will be called increasing. If a permutation

π has a decreasing strip, then there exists a reversal that decreases the number of

breakpoints by at least one. Assume k is the smallest right border of any decreasing

strip. This implies that the element k − 1 is at the right border of an increasing strip,

followed by a breakpoint. Assume further that in π the element k − 1 is followed

by the element y and that the element k is followed by the element x (also a break-

point). If the element k − 1 is to the right (left) of k, then the reversal of the interval

x, ..., k − 1(y, ..., k, respectively) will remove at least one breakpoint. (The reversal

will remove two breakpoints if x and y are adjacent.) The following two sketches

indicate the relative location of k, k − 1, x , and y before and after performing the

reversal; a breakpoint is indicated by a “|” symbol.

k − 1 to the right of k: (... k | x ... k − 1 | y ...) → (... k k − 1 ... x | y ...)

k − 1 to the left of k: (... k − 1 | y ... k | x ... ) → (... k − 1 k ... y | x ...).
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If the permutation π only has increasing strips, we can generate a decreasing strip

by reversing one strip, and reduce the number of breakpoints with the second reversal.

This motivates the following algorithm.

Algorithm 2: BREAKPOINTREVERSALSORT (π )
1 while b(π ) > 0

2 if π has a decreasing strip
3 Choose reversal r that minimizes b(π • r )

4 else
5 Choose a reversal r that flips an increasing strip in π

6 π ← π • r

7 output π

8 return

How many iterations does this algorithm need to sort an arbitrary input permutation?

As long as there are decreasing strips in the permutation, each iteration will decrease the

number of breakpoints by at least one. When there is no decreasing strip, the algorithm

will reverse an increasing strip without decreasing the number of breakpoints. This

creates a decreasing strip and guarantees the existence of a reversal that will reduce

the number of breakpoints in the next iteration. Therefore, this algorithm guarantees

that during two consecutive reversals at least one breakpoint is removed. Although

we cannot guarantee that this procedure will find the minimum number of reversals

necessary to sort the permutation, we can argue that the constructed solution will not

use more than four times the minimum number of reversals. To see this, assume that we

are given an input permutation with b(π) breakpoints. We know that any algorithm will

need at least �b(π)�
2 reversals for sorting π – possibly more. The above algorithm will

need at most 2b(π) reversals, which is at most 2b(π)⌈
b(π )

2

⌉ ≤ 4 times the optimal number of

reversals.

4 Signed reversals

While Dobzhansky and Sturtevant could only observe the relative order of a few

genetic markers (chromosome bands) with their light microscope, nowadays com-

pletely sequenced genomes offer a much higher resolution. The location of genes can

be pinned down to individual nucleotides, and we can also learn about each gene’s

orientation, i.e. their location on one of the two complementary DNA strands. The

latter information, in particular, is extremely useful for designing efficient algorithms
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(a) (b) (c)

Figure 9.6 Reversal scenario, human and mouse. (a) Human and mouse are descendants
from a common evolutionary ancestor. (b) Synteny blocks, which are groups of genes or
genomic markers present in both organisms with an evolutionarily conserved order, are used
as the basic input elements for various rearrangement algorithms. A genomic dot-plot of the
synteny blocks in human and mouse reveals that the human and mouse X-chromosomes are
permutations of one another. (c) A series of 10 reversals transforms the mouse X-chromosome
into the human X-chromosome.

to find optimal rearrangement scenarios. However, despite the higher level of resolu-

tion in sequenced genomes, reconstructing genome rearrangement scenarios is more

complicated than you might expect. Identifying the corresponding (homologous) gene

pairs in different organisms itself is not easy, and there are many processes such as

point mutations, horizontal gene transfer, deletions, and expanding repeat families that

complicate this task even further. Moreover, even if we know the correct gene order

and orientation in two completely sequenced genomes, this does not suffice to infer

the precise location and extent of all genome rearrangement events since, for example,

rearrangements in an intergenic region between two consecutive genes are overlooked.

To overcome these problems, researchers do not focus solely on genes, but start

from a dense set of genomic anchors – short genomic substrings that are derived from

both genes and intergenic regions and that can be uniquely mapped to both genomes.

These anchors are filtered and clustered in order to identify groups of anchors with

an evolutionarily conserved order. (See [12] for the details of this procedure.) The

resulting groups are called synteny blocks, and they are the basic input elements
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for rearrangement algorithms. In the following, we will represent synteny blocks by

integers and their orientation (strand) by a “+” or “−” sign, as we did previously for

genes. Under this notation, genomes correspond to signed permutations, and a reversal

will now not only reverse the order of the involved elements, but also simultaneously

flip the sign of each affected element.

Figure 9.6 shows a genomic dot-plot comparing human and mouse X-chromosomes.

A series of reversals transforms the mouse X-chromosome into the human X-

chromosome. Although the inclusion of orientation information may at first seem

to complicate the problem, it turns out that this additional constraint allows the design

of efficient genome rearrangement algorithms. While the computation of the unsigned

reversal distance is an NP-hard problem, signed reversal distances can be computed

using an O(n) time algorithm [11, 13]. The details of these algorithms and their varia-

tions are beyond the scope of this presentation, and the interested reader is referred to

the following thorough overview [7].

5 DCJ operations and algorithms for multiple chromosomes

So far, we have only considered rearrangements that affect a single chromosome.

However, many genomes consist of multiple chromosomes, and genome rearrange-

ments like translocation, and fusion and fission (special types of translocations, see

Figure 9.2) affect two different chromosomes simultaneously. Hannenhalli and Pevzner

[14] were the first to propose a polynomial-time algorithm for computing the multi-

chromosomal genome rearrangement distance, dHP, which counts the minimum num-

ber of reversals and/or translocations necessary to sort two genomes that consist of

multiple linear chromosomes. This algorithm essentially caps and concatenates all

chromosomes, and sorts the resulting artificial “super-chromosome” via signed rever-

sals. The algorithm is quite complex, requiring multiple parameters, and it has been

revised several times [15–17]. An implementation is provided on the GRIMM web

server (http://grimm.ucsd.edu/GRIMM/, [15]).

The DCJ model is an alternative rearrangement model introduced by Yancopou-

los and colleagues [18]. This model computes the distance metric, dDCJ, using the

Double-Cut-and-Join (or DCJ) genome rearrangement operations. Like Hannenhalli

and Pevzner’s approach, the DCJ genome rearrangement algorithms are efficient, but

they are also relatively easy to implement. Our description here follows the presentation

of Anne Bergeron and colleagues [19, 20]. Once again, a gene and its orientation are

represented by a signed integer. The genes of a genome are grouped into chromosomes,

which can either be linear, in which case both telomeres are represented by the special
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symbol “o,” or circular without a telomere. For example, consider a genome consisting

of a linear chromosome c1 = (1 −2 3 4) and a circular chromosome c2 = (5 6 7). In

the DCJ model, this genome is represented as c1 = (o 1 −2 3 4 o) and c2 = (5 6 7).

The DCJ genome rearrangement operations act on the intergenic regions between

consecutive genes, or between a gene and a neighboring telomere. A DCJ operation

breaks one or two intergenic regions (possibly on different chromosomes), and joins

the resulting open ends. To describe this operation elegantly, we will replace each

positively oriented gene g by an interval [−g,+g] and each negatively oriented gene

−g by [+g,−g], where +g and −g represent the gene ends (often also denoted as 5′

and 3′ gene ends). In addition, we represent each telomere by the special character

“o” which has no orientation (see Figure 9.7). An intergenic region, also known as an

adjacency, can now be encoded by its unordered pair of neighboring gene ends, or

by an unordered pair consisting of one gene end and a telomere symbol. In addition,

we also allow “special” adjacencies {o,o} consisting of two telomere symbols. These

adjacencies do not actually correspond to a known biological structure, but simplify

the representation of certain DCJ transformations. In our example, c1 has the adjacen-

cies {o,–1}, {1,2},{–2,–3},{3,–4},{4,o} and c2 has the adjacencies {5,–6}, {6,–7},

{7,–5}. Knowing all adjacencies of a genome is equivalent to knowing the original

gene order and orientation. Simply start with any adjacency and extend to the left

and right, matching adjacencies until a telomere is reached (in the case of a linear

chromosome), or an already chosen gene is encountered (in the case of a circular

chromosome). Repeat this procedure until all adjacencies have been used and you have

reconstructed the genome.

A DCJ operation “breaks” two intergenic regions (adjacencies) and rearranges the

fragments. Formally, this corresponds to replacing a pair of adjacencies {a,b} and {c,d}
by {a,d} and {c,b}, or {a,c} and {b,d}. Here, the variables a, b, c, and d represent

different (signed) gene ends or telomeres; for telomeres we assume “+o” = “−o.” A

special case of this operation occurs when one of the adjacencies is {o,o}. In this case

we get the rearrangement, {a,b} {o,o}↔ {a,o} {b,o}, which corresponds to replacing

the adjacency {a,b} by the pair of adjacencies {a,o} and {b,o}.

The DCJ operations can be used to implement a variety of different types of genome

rearrangements, including reversals, translocations, chromosome fusion and fission,

transpositions, and block exchanges. For example, if we apply a DCJ operation that

replaces {1,2} and {3,–4} by {1,3} and {2,–4} in the above chromosome c1, we obtain

the rearranged chromosome c1′ = (o 1 −3 2 4 o). In this case, the DCJ rearrangement

corresponds to a signed reversal of genes 2 and 3 (Figure 9.7b). If we apply the DCJ

operation that replaces {1,2} and {3,–4} by {1,–4} and {2,3}, the rearrangement

excises the chromosomal interval [2,–3] and transforms it into a new circular chromo-

some (Figure 9.7c), resulting in c11′ = (o 1 4 o) and c12′ = (2, −3). If we break the
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Figure 9.7 Double-Cut-and-Join (DCJ) operations. (a) Encoding of one linear and one circular
chromosome using the adjacency notation described in the text. Adjacencies are depicted by
orange boxes. (b–d) DCJ operations can be used to implement a variety of different types
of genome rearrangements. Panel (b) illustrates how a DCJ operation can be employed to
implement a signed reversal of genes 2 and 3. In panel (c), genes 2 and 3 are excised from
the chromosome resulting in one linear and one circular chromosome. Panel (d) shows the
transformation of a circular chromosome into a linear chromosome using a DCJ operation.
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Figure 9.7 (Cont.)

adjacency {6,–7} of the circular chromosome c2 and replace it by {6,o} and {o,–7}
we obtain the linearized chromosome c2′ = (o 7 5 6 o) shown in Figure 9.7d. Similar

to the above Hannenhalli and Pevzner distance, the DCJ distance, dDCJ, is defined as

the minimum number of DCJ rearrangement operations necessary to transform one

genome into another. Since the DCJ distance has several other rearrangement types

available in addition to the reversals and translocations of the Hannenhalli and Pevzner

distance, we get dDCJ ≤ dHP.
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One major advantage of the DCJ model is the availability of simple graph algorithms

that transform one genome into another. As an example we describe in the following

the algorithm DCJSORT that was originally presented by Bergeron and colleagues

[17]. Assume that you are given two genomes, A and B, containing the same set of

n genes. We define the adjacency graph AG(A,B) = (V,E), a bipartite graph where V

contains one vertex for each adjacency of genome A and one vertex for each adjacency

of genome B. In the following we will refer to the set of vertices derived from genome

A and B as VA and VB, respectively. Each gene, g, defines two edges, one connecting

the adjacencies of A and B where +g occurs as a gene border, the other connecting

the adjacencies where –g occurs. The idea of algorithm DCJSORT is to find and apply

a sequence of DCJ operations to genome A that reduces, in each step, the number

of adjacencies of genome B that do not occur in genome A. If there are no such

adjacencies left, the resulting genomes are identical and a sequence of DCJ operations

that transforms genome A into genome B has been found.

DCJSORT operates in three phases. In phase one, the adjacency graph AG(A,B) is

constructed. In phase two, the algorithm searches for adjacencies {p,q} in genome B

where the corresponding (single) vertex w={p,q}∈ VB of AG(A,B) is incident to a pair

of vertices u1 ={p,l} ∈ VA and u2 ={q,m} ∈ VA (corresponding to two adjacencies

in genome A). The algorithm applies the DCJ operation that replaces {p,l} and {q,m}
by {p,q} and {l,m} to genome A and updates the adjacency graph correspondingly.

This increases the number of shared adjacencies between target genome B and the

transformed genome A by at least one. When no such adjacencies remain, it can

be concluded that if there are still adjacencies in genome B that do not appear in

the transformed genome A, then these adjacencies are incident to only one vertex

u = {p,l} ∈ VA, and these adjacencies therefore include telomeres. In this case,

each incident vertex u = {p,l} ∈ VA corresponds to the two adjacencies {p,o} and

{o,l}. In phase three, DCJSORT handles these vertices by applying a DCJ operation

that replaces the adjacency {p,l} with {p,o} and {o,l} and updates the adjacency

graph correspondingly. See Figure 9.8 for an example. This simple algorithm finds a

sequence of DCJ operations of minimum length dDCJ(A,B) that transforms genome A

into genome B. Moreover, let C denote the number of cycles, and I the number of

paths with an odd number of edges in AG(A,B). We have dDCJ(A,B) = n – C –I /2.

For a proof, as well as further details about an implementation with O(n) worst-case

running time, the reader is referred to [19, 20].

Algorithm 3: DCJSORT (A,B)
1 Generate adjacency graph AG(A, B) of A and B
2 for each adjacency {p, q} with p, q
=o in genome B do
3 let u={p,l} be the vertex of A that contains p
4 let v={q,m} be the vertex of A that contains q
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Figure 9.8 DCJSORT transforms genome A: (o1 − 2 3 4 o) (5 6 7) into genome B:
(o 1 2 3 4 o) (o 5 6 7 o). Phase one (panel a): The adjacency graph is generated. Phase two
(panels b and c): {1, 2}{−2, −3} → {1, −2}{2, −3} and {4, o}{7, −5} → {7, o}{4, −5}.
Phase three (panel d): {3, −4} → {3, o}{o, −4}. The affected adjacencies are marked red.

5 if u 
= v then
6 replace vertices u and v in A by {p,q} and {l,m}
7 update edge set
8 end if
9 end for
10 for each telomere {p,o} in B do
11 let u = {p,l} be the vertex of A that contains p
12 if l 
= o then
13 replace vertex u in A by {p,o} and {o,l}
14 update edge set
15 end if
16 end for
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DISCUSSION

Genome rearrangements are an important natural engine of genetic variation
and are therefore critical for a deep understanding of evolution, and the origin of
many important diseases, including cancer. Simultaneously, rearrangements are
also an interesting application field for demonstrating basic principles of
algorithm design, providing students with an opportunity to learn how to model
genome rearrangements, to apply and analyze genome sorting algorithms, and to
compare exact and approximate solutions to the problem.

While the first studies of genome rearrangements were performed using
low-resolution marker maps from giant chromosomes in fruit flies, rapid
advancements in sequencing technology have now made it possible to compare
the entire genomes of hundreds of organisms. Motivated by this data avalanche,
we investigate the performance of various approaches to solving genome
rearrangement problems. Beginning with an analogy to familiar recreational
word games, we demonstrate how one can describe and model genome
rearrangements using permutations. We show that transforming one genome into
another is similar to the classic problem of computing the edit distance between
two homologous sequences, or, equivalently, of computing an optimal alignment.
Throughout the chapter, we proceed to introduce a series of increasingly complex
distance metrics and genome transformation operations, illustrating how these
choices influence the resulting genome sorting algorithms.

Interestingly, the computational complexity of rearrangement algorithms is
very different depending on how exactly the problem is modeled. While it is quite
simple to find a sequence of rearrangements that transforms one chromosome
into another, for unsigned reversals, finding the shortest such sequence is
NP-hard and might take a long time for large genomes [11]. This provides a
natural motivation for developing approximation algorithms. On the other hand,
for signed reversals, the problem can be solved exactly in linear time [13].
Furthermore, the same approach can also be generalized to multi-chromosomal
genomes, although the resulting algorithms are rather difficult to understand and
implement [14–16]. The alternative DCJ model uses an extremely flexible genome
rearrangement operation that acts on multi-chromosome genomes and the
corresponding algorithms for finding optimal DCJ rearrangement sequences are
both simple and efficient [18–20]. Together, these varied approaches to the
genome rearrangement and sorting problem illustrate an intimate connection
between biological data, mathematical modeling, and the design of efficient and
practical computer algorithms – a theme that has become increasingly important
in many areas of modern biology.
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QUESTIONS

(1) Describe the similarities and differences between a word transformation scenario and a
point mutation scenario.

(2) Describe the similarities and differences between word anagrams and genome
rearrangements.

(3) Can you transform the word “stipend” into “spend it” using unsigned reversals? You can
ignore the space character in this example.

(4) Can you find a permutation without any decreasing strip where the number of breakpoints
can be reduced by a reversal?

(5) Can you find a DCJ operation that implements the rearrangements shown in Figure 9.2?
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CHAPTER TEN

Comparison of phylogenetic
trees and search for a central
trend in the “Forest of Life”

Eugene V. Koonin, Pere Puigbò, and Yuri I. Wolf

The widespread exchange of genes among prokaryotes, known as horizontal gene transfer
(HGT), is often considered to “uproot” the Tree of Life (TOL). Indeed, it is by now fully clear
that genes in general possess different evolutionary histories. However, the possibility remains
that the TOL concept can be reformulated and remains valid as a statistical central trend in the
phylogenetic “Forest of Life” (FOL). This chapter describes a computational pipeline developed
to chart the FOL by comparative analysis of thousands of phylogenetic trees. This analysis
reveals a distinct, consistent phylogenetic signal that is particularly strong among the Nearly
Universal Trees (NUTs), which correspond to genes represented in all or most of the organisms
analyzed. Despite the substantial amount of apparent HGT seen even among the NUTs, these
gene transfers appear to be distributed randomly and do not obscure the central tree-like
trend.

1 The crisis of the Tree of Life in the age of genomics

The Tree of Life (TOL) is one of the dominant concepts in biology, starting from the

famous single illustration in Darwin’s Origin of Species to twenty-first century under-

graduate textbooks. For approximately a century, beginning with the first, tentative trees

published by Haeckel in the 1860s and up to the foundation of molecular evolutionary

Bioinformatics for Biologists, ed. P. Pevzner and R. Shamir. Published by Cambridge University Press.
C© Cambridge University Press 2011.
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analysis by Zuckerkandl, Pauling, and Margoliash in the early 1960s, phylogenetic

trees were constructed on the basis of comparing phenotypes of organisms. Thus, by

design, every constructed tree was an “organismal” or “species” tree; that is, a tree

was assumed to reflect the evolutionary history of the corresponding species. Even

after the concepts and early methods of molecular phylogeny had been developed, for

many years, it was used simply as another, perhaps, particularly powerful and accurate

approach to the construction of species trees. The TOL concept remained intact, with

the general belief that the TOL, at least in principle, would accurately represent the

evolutionary relationships between all lineages of cellular life forms. The discovery of

the universal conservation of rRNA and its use as the molecule of choice for phyloge-

netic analysis pioneered by Woese and coworkers [1, 2] resulted in the discovery of a

new domain of life, the archaea, and boosted the hopes that the definitive topology of

the TOL was within sight.

However, even before the era of complete genome sequencing and analysis, it has

become clear that in prokaryotes some common and biologically important genes have

experienced multiple exchanges between species known as horizontal gene transfer

(HGT); hence the idea of a “net of life” as an alternative to the TOL. The advances of

comparative genomics have revealed that different genes very often have distinct tree

topologies and, accordingly, that HGT appears to be the rule rather than an exception

in the evolution of prokaryotes (bacteria and archaea) [3–5].

It seems worth mentioning some remarkable examples of massive HGT as an illus-

tration of this key trend in the evolution of prokaryotes. The first case in point per-

tains to the most commonly used model of microbial genetics and molecular biology,

the intestine bacterium Escherichia coli. Some basic information on the genome of

E. coli and other sequenced microbial genomes is available on the website of the

National Center for Biotechnology Information at the National Institutes of Health

(http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome). The most well-studied labo-

ratory isolate of E. coli on which most of the classic experiments of molecular biology

have been performed is known as K12. The K12 genome encompasses 4,226 annotated

protein-coding genes (there is always uncertainty as to the exact number of the genes

in a sequenced genome, for instance, because it remains unclear whether or not some

small genes actually encode proteins; however, the estimate suffices for the present dis-

cussion). Several other sequenced genomes of laboratory E. coli strains possess about

the same number of genes. In contrast, genomes of pathogenic strains of E. coli are

typically much larger, with one strain, O157:H7, encoding 5,315 annotated proteins.

The nucleotide sequences of the shared genes in all strains of E. coli are identical

or differ by just one or two nucleotide substitutions. In a stark contrast, the differ-

ences between the genomes of laboratory and pathogenic strains concentrate in several
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“pathogenicity islands” that comprise up to 20% of the genome. The pathogenicity

islands encompass genes typically involved in bacterial pathogenesis such as toxins,

systems for their secretion, and components of prophages. One can imagine that the

pathogenicity islands were present in the ancestral E. coli genome but have been deleted

in K12 and other laboratory strains. However, the gene contents of the islands differ

dramatically between the pathogenic strains, so that in three-way comparisons of E.

coli genomes only about 40% of the genes are shared typically. Thus, the only possi-

ble conclusion is that the pathogenicity islands spread between bacterial genomes via

rampant HGT, conceivably driven by selection for survival and spread of the respective

bacterial pathogens within the host organisms.

The second example involves apparent large-scale HGT across much greater evo-

lutionary distances, namely, between the two “domains” of prokaryotes, bacteria and

archaea [1, 2]. The distinction between these two distinct domains of microbes was

established by phylogenetic analysis of rRNA sequences and the sequences of other

conserved genes, and has been supported by major distinctions between the systems of

DNA replication and the membrane apparatus of the respective organisms. Compara-

tive analysis of the first few sequenced genomes of bacteria and archaea supported the

dichotomy between the two domains: most of the protein sequences encoded in bacte-

rial genomes show the greatest similarity to homologs from other bacteria and cluster

with them in phylogenetic trees, and the same pattern of evolutionary relationships

is seen for archaeal proteins. However, the analysis of the first sequenced genomes

of hyperthermophilic bacteria, Aquifex aeolicus and Thermotoga maritima, yielded a

striking departure from this pattern: the protein sets encoded in these genomes were

shown to be “chimeric,” i.e. they consist of about 80% typical bacterial proteins and

about 20% proteins that appear distinctly “archaeal,” by sequence similarity and phy-

logenetic analysis. The conclusion seems inevitable that these bacteria have acquired

numerous archaeal genes via HGT. In retrospect, this finding might not appear so sur-

prising because bacterial and archaeal hyperthermophiles coexist in the same habitats

(e.g. hydrothermal vents on the ocean floor) and have ample opportunity to exchange

genes. Similar chimeric genome composition, but with reversed proportions of archaeal

and bacterial genes, has been subsequently discovered in mesophilic archaea such as

Methanosarcina.

Beyond these and related observations made by comparative genomics of prokary-

otes, HGT is thought to have been crucial also in the evolution of eukaryotes, especially

as a consequence of endosymbiotic events in which numerous genes from the genome

of the ancestors of mitochondria and chloroplasts have been transferred to nuclear

genomes [6]. These findings indicate that no single gene tree (or any group of gene

trees) can provide an accurate representation of the evolution of entire genomes; in
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other words, the results of comparative genomics indicate that a perfect TOL fully

reflecting the evolution of cellular life forms does not exist. The realization that

HGT is a major evolutionary phenomenon, at least among prokaryotes, led to a cri-

sis of the TOL concept which is often viewed as a paradigm shift in evolutionary

biology [4].

Of course, the inconsistency between gene phylogenies caused by HGT, however

widespread, does not alter the fact that all cellular life forms are linked by an uninter-

rupted tree of cell divisions (Omnis cellula e cellula according to the famous motto

of Rudolf Virchow) that goes back to the earliest stages of evolution and is vio-

lated only by endosymbiosis events that were key to the evolution of eukaryotes but

not prokaryotes. Thus, the difficulties of the TOL concept in the era of compara-

tive genomics concern the TOL as it can be derived by the phylogenetic analysis of

multiple genes and genomes, an approach often denoted “phylogenomics,” to empha-

size that phylogenetic studies are now conducted on the scale of complete genomes.

Accordingly, the claim that HGT “uproots the TOL” means that extensive HGT has

the potential to completely decouple molecular phylogenies from the actual tree of

cells. However, such decoupling has clear biological connotations given that the evo-

lutionary history of genes also describes the evolution of the encoded molecular

functions. In this chapter, the phylogenomic TOL is discussed with such an implicit

understanding.

The views of evolutionary biologists on the evolving status of the TOL in the age of

comparative genomics span the entire spectrum of positions from: (i) persisting denial

of the major importance of HGT for evolutionary biology; to (ii) “moderate” overhaul

of the TOL concept; to (iii) genuine uprooting, whereby the TOL is declared obsolete

[7]. The accumulating data on diverse HGT events are quickly making the first “anti-

HGT” position plainly untenable. Under the intermediate moderate approach, despite

all the differences between the topologies of individual gene trees, the TOL still makes

sense as a representation of a central trend (consensus) that, at least in principle, could

be elucidated through a comprehensive comparison of trees for individual genes [8].

By contrast, under the radical “anti-TOL” view, rampant HGT eliminates the very

distinction between the vertical and horizontal transmission of genetic information, so

the TOL concept should be abandoned altogether in favor of some form of a network

representation of evolution [7].

This chapter describes some of the methods that are used to compare topologies

of numerous phylogenetic trees and the results of the application of these approaches

to the analysis of approximately 7,000 phylogenetic trees of individual prokaryotic

genes that collectively comprise the “Forest of Life” (FOL). This set of trees does

gravitate to a single tree topology, suggesting that the “TOL as a central trend” concept

is potentially viable.
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Figure 10.1 The bioinformatic pipeline for the analysis of the Forest of Life.

2 The bioinformatic pipeline for analysis of the
Forest of Life

The realization that, owing to widespread HGT, the evolutionary history of each gene is

in principle unique brings the emphasis on phylogenomics; that is, genome-wide com-

parative analysis of phylogenetic trees. This task depends on a bioinformatic pipeline

which leads from protein sequences encoded in the analyzed genomes to a represen-

tative collection of phylogenetic trees (Figure 10.1). The pipeline consists of several

essential steps: (1) selection of genes for phylogenetic analysis, (2) multiple alignment

of orthologous protein sequences, i.e. amino acid sequences of proteins encoded by “the

same” gene from different organisms (in evolutionary biology, such genes are usually

called orthologs), (3) construction of phylogenetic trees, (4) calculation of the distances

between trees and construction of a tree distance matrix, (5) clustering and classification

of trees on the basis of the distance matrix. Obviously, this pipeline incorporates a vari-

ety of computational methods, and it is impractical to present all of them in detail within

a relatively short chapter. However, a brief outline of these methods is given below.

The current collection of complete microbial genomes includes over 1,000 organisms
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Figure 10.2 The distribution of the trees in the FOL by the number of species.

(http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial taxtree.html), so it is

impractical to use them all for phylogenetic analysis as it quickly becomes prohibitively

computationally expensive with the increase of the number of species. Therefore, the

FOL was analyzed using a manually selected representative set of 100 prokaryotes [9].

The great majority of orthologous gene clusters include a relatively small number

of organisms. In the set of clusters selected for phylogenomic analysis of the FOL,

the distribution of the number of species in trees showed exponential decay, with only

about 2,000 out of the approximately 7,000 clusters including more than 20 species

(Figure 10.2). The truly universal gene core of cellular life is tiny and continues

to shrink as new genomes are sequenced, owing to the loss of “essential” genes in

some organisms with small genomes and to errors of genome annotation. Among the

trees in the FOL, there were about 100 Nearly Universal Trees (NUTs), i.e. trees for

gene families represented in all or nearly all analyzed organisms; almost all NUTs

correspond to genes encoding proteins involved in translation and transcription [9].

The NUTs were analyzed in parallel with the complete set of trees in the FOL.

Before constructing a phylogenetic tree, the sequences of orthologous genes or pro-

teins need to be aligned, i.e. all homologous positions have to be identified and posi-

tioned one under another to allow subsequent comparative analysis of the sequences.

For large evolutionary distances, as is the case between many members of the ana-

lyzed set of 100 microbial genomes, trees are constructed using multiple alignments

of protein sequences (Figure 10.1).

Once the sequences of orthologous proteins are aligned, the construction of phylo-

genetic trees becomes possible. Many diverse approaches and algorithms have been

developed for building phylogenetic trees. There is no single “best” phylogenetic
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method that would be optimal for solving any problem in evolution, but in general the

highest quality of phylogenetic reconstruction is achieved with maximum likelihood

methods that employ sophisticated probabilistic models of gene evolution [10].

The construction of the trees (about 7,000 altogether) provides for an attempt to

identify patterns in the FOL and address the question of whether or not there exists a

central trend among the trees that perhaps could be considered an approximation of a

TOL. To perform such an analysis, it is necessary first to build a complete, all-against-

all matrix of the topological distances between the trees; obviously, this matrix is a

big, approximately 7,000 × 7,000 square table in which each cell contains a distance

between two trees.

So how does one compare phylogenetic trees and how are the distances in the

matrix calculated? Comparison of trees is much less commonly used than phylogenetic

analysis per se, but in the age of genomics, it is rapidly becoming a mainstream

methodology. Essentially, what is typically compared are the topologies (that is, the

branching order) of the trees, and the distance between the topologies can be captured

as the fraction of the tree “splits” that are different (or common) between two compared

trees (Figure 10.3). An additional idea implemented in the method for tree topology

comparison illustrated in Figure 10.3 is to take into account the reliability of the

internal branches of the tree, so that the more reliable branches contribute more than

the dubious ones to the distance estimates. The reliability or statistical support for tree

branches is usually estimated in terms of the so-called bootstrap values that vary from

0 (no support at all) to 1 (the strongest support). In the Boot Split Distance (BSD)

method for tree topology comparison illustrated in Figure 10.3, the contribution of

each split is weighted using the bootstrap values.

3 Trends in the Forest of Life

3.1 The NUTs contain a consistent phylogenetic signal, with
independent HGT events
Figure 10.4 represents the NUTs as a network in which the edges are drawn on the

basis of the topological distances between the trees (see the preceding section and

Figure 10.3). Clearly, the topologies of the NUTs are highly coherent, so that when a

relatively short distance of 0.5 is used as the threshold to draw edges in the network,

almost all the nodes in the network are connected (Figure 10.4). In 56% of the NUTs,

representatives of the two prokaryotic domains, archaea and bacteria, are perfectly sep-

arated, whereas the remaining 44% of the NUTs showed indications of HGT between

archaea and bacteria. Of course, even in the 56% of the NUTs that showed no sign of
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Figure 10.3 Comparison of phylogenetic tree topologies. Identical (equal) splits are shown by
connected green circles, and different splits are shown by red circles. Bootstrap values are
shown as percent. The Boot Split Distance (BSD) between the trees was calculated using the
formula shown in the figure. The designations are:

e = ∑
Bootstrap of equal splits

d = ∑
Bootstrap of different splits

a = ∑
Bootstrap of all splits

x = Mean Bootstrap of equal splits
y = Mean Bootstrap of different splits

interdomain gene transfer, there were many probable HGT events within one or both

domains, indicating that HGT is indeed common, even in this group of nearly universal

genes.

To analyze the structure of a distance matrix between any objects, including phy-

logenetic trees, researchers often use so-called multidimensional scaling that reveals

clustering of the compared objects. Cluster analysis of the NUTs using the Classical

MultiDimensional Scaling (CMDS) method shows lack of significant clustering: all
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≥ 80% of similarity ≥ 75% of similarity ≥ 50% of similarity

Figure 10.4 The network of similarities among the NUTs. Each node denotes a NUT, and
nodes are connected by edges if the topological similarity between the respective trees
exceeds the indicated threshold (in other words, if the distance between these trees is
sufficiently low). The circular arrows show that each node is connected with itself.

(a) (b)

Figure 10.5 Clustering of the NUTs and the entire FOL using the Classical MultiDimensional
Scaling (CMDS) method. (a) The best two-dimensional projection of the clustering of the 102
NUTs in a 30-dimensional space. (b) The best two-dimensional projection of the clustering of
3,789 largest trees from the FOL in a 669-dimensional space. The seven clusters are
color-coded and the NUTs are shown by circles.
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Figure 10.6 The FOL network and the NUTs. The figure shows a network representation of
the 6,901 trees in the FOL. The 102 NUTs are shown as red circles in the middle. The NUTs are
connected to trees with similar topologies: trees that show at least 50% of similarity with at
least one NUT are shown as purple circles and are connected to the NUTs. The rest of the trees
are denoted by green circles.

the NUTs formed a single, unstructured cloud of points (Figure 10.5a). This organi-

zation of the tree space is best compatible with random deviation of individual NUTs

from a single, dominant topology, mostly as a result of HGT but also in part due to

random errors of the tree construction procedure. The results of this analysis indicate

that the topologies of the NUTs are scattered within a close vicinity of a consensus

tree, with the HGT events distributed at least approximately randomly, a finding that

is compatible with the idea of a “TOL as a central trend.”

3.2 The NUTs versus the FOL
The structure of the FOL was analyzed using the CMDS procedure, with the results

being very different from those seen with the NUTs: in this case, seven distinct clusters
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of trees were revealed (Figure 10.5b). The clusters significantly differed with respect to

the distribution of the trees by the number of species, the partitioning of archaea-only

and bacteria-only trees, and the functional classification of the respective genes [9].

Notably, all the NUTs formed a compact group within one of the clusters and were

roughly equidistant from the rest of the clusters (Figure 10.5b). Thus, the FOL seems

to contains several distinct “groves” of trees with different evolutionary histories. The

critical observation is that all the NUTs occupy a compact and contiguous region of

the tree space and, unlike the complete set of the trees, are not partitioned into distinct

clusters by the CMDS procedure (Figure 10.5a). Moreover, the NUTs are, on average,

highly similar to the rest of the trees in the FOL as shown in Figure 10.6. Taken

together, these findings suggest that the NUTs collectively could represent a central

trend in the FOL.

DISCUSSION: THE TREE OF LIFE CONCEPT IS
CHANGING, BUT IS NOT DEAD

Prokaryotic genomics revealed the wide spread of HGT in the prokaryotic world
and is often claimed to “uproot” the TOL [4]. Indeed, it is now well established
that HGT spares virtually no genes at some stages in their history [5], and these
findings make obsolete a “strong” TOL concept under which all (or the
substantial majority) of the genes would tell a consistent story of genome
evolution (the species tree, or the TOL) when analyzed using appropriate data
sets and methods. However, is there any hope of salvaging the TOL as a statistical
central trend [8]? Comprehensive comparative analysis of the “forest” of
phylogenetic trees for prokaryotic genes outlined here suggests a positive
answer to this crucial question of evolutionary biology [9].

This analysis results in two complementary conclusions. On the one hand, there
is a high level of inconsistency among the trees comprising the FOL, owing
primarily to extensive HGT, a conclusion that is supported by more direct
observations of numerous likely transfers of genes between archaea and bacteria.
However, there is also a distinct signal of a consensus topology that was
particularly strong among the NUTs. Although the NUTs show a substantial
amount of apparent HGT, these transfers seem to be distributed randomly and did
not obscure the vertical signal. Moreover, the topologies of the NUTs are quite
similar to those of numerous other trees in the FOL, so although the NUTs cannot
represent the FOL completely, this set of largely consistent, nearly universal trees
is a good candidate for representing a central trend.
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QUESTIONS

(1) Do the phylogenetic trees for all genes in a genome possess the same topology?
(2) Is it possible to detect a common central trend in a genome-wide analysis of tree

topologies?
(3) What are the biological functions of genes that are nearly universally conserved among

cellular life forms?

REFERENCES

[1] N. R. Pace, G. J. Olsen, and C. R. Woese. Ribosomal RNA phylogeny and the primary lines
of evolutionary descent. Cell, 45: 325–326, 1986.

[2] C. R. Woese. Bacterial evolution. Microbiol. Rev., 51: 221–271, 1987.
[3] T. Dagan, Y. Artzy-Randrup, and W. Martin. Modular networks and cumulative impact

of lateral transfer in prokaryote genome evolution. Proc. Natl. Acad. Sci. U S A, 105:
10039–10044, 2008.

[4] W. F. Doolittle. Phylogenetic classification and the universal tree. Science, 284:
2124–2129, 1999.

[5] J. P. Gogarten and J. P. Townsend. Horizontal gene transfer, genome innovation and
evolution. Nat. Rev. Microbiol., 3: 679–687, 2005.

[6] T. M. Embley and W. Martin. Eukaryotic evolution, changes and challenges. Nature, 440:
623–630, 2006.

[7] W. F. Doolittle and E. Bapteste. Pattern pluralism and the Tree of Life hypothesis. Proc.
Natl. Acad. Sci. U S A, 104: 2043–2049, 2007.

[8] Y. I. Wolf, I. B. Rogozin, N. V. Grishin, and E. V. Koonin. Genome trees and the Tree of Life.
Trends Genet., 18: 472–479, 2002.

[9] P. Puigbo, Y. I. Wolf, and E. V. Koonin. Search for a Tree of Life in the thicket of the
phylogenetic forest. J. Biol., 8: 59, 2009.

[10] J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Sunderland, MA, 2004.



CHAPTER ELEVEN

Reconstructing the history of
large-scale genomic changes:
biological questions and
computational challenges

Jian Ma

In addition to point mutations, larger-scale structural changes (including rearrangements,
duplications, insertions, and deletions) are also prevalent between different mammalian
genomes. Capturing these large-scale changes is critical to unraveling the history of
mammalian evolution in order to better understand the human genome. It also has profound
biomedical significance, because many human diseases are associated with structural genomic
aberrations. The increasing number of mammalian genomes being sequenced as well as recent
advancement in DNA sequencing technologies are allowing us to identify these structural
genomic changes with vastly greater accuracy. However, there are a considerable number of
computational challenges related to these problems. In this chapter, we introduce the
ancestral genome reconstruction problem, which enables us to explain the large-scale genomic
changes between species in an evolutionary context. The application of these methods to
within-species structural variation and disease genome analysis is also discussed. The target
audience of this chapter is advanced undergraduate students in biology.
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1 Comparative genomics and ancestral genome
reconstruction

1.1 The Human Genome Project
The Human Genome Project (HGP) is one of the greatest scientific achievements in

the twentieth century. In 2001, the draft of the human genome was completed. The

human genome has been sequenced in high quality in terms of accuracy and coverage

(i.e. the proportion of sequenced bases). One may ask the question: does this mean

that we have almost successfully understood our genomes? Unfortunately, this is not

the case. We have only scratched the surface of this question, and we are actually at

the very beginning of this long scientific journey. Much effort and investigation is still

needed to understand how genes and the genome contribute to the complex cellular

functions of our body.

1.2 Comparative genomics
During evolution, negative (or purifying) selection causes genomic sequences that

yield functional products to evolve more slowly than the neutral expectation. There-

fore, an important approach to identify the functional sequences in the human genome

is to compare it with the genomes of other species and search for conserved regions.

Since the HGP, a number of other mammalian genome sequencing projects have been

completed, including mouse, rat, dog, chimpanzee, rhesus macaque, opossum, and

cow. The genome sequences from these mammals have greatly advanced the study

of mammalian comparative genomics [1]. Scientists have developed various compu-

tational methods to compare these sequenced genomes to select candidate functional

regions to further test in the laboratory. More mammalian species are planned to be

sequenced.

Besides conserved regions, these mammalian genomes have also provided us with

a great opportunity to elucidate dramatic genomic differences between species. For

example, Figure 11.1 shows the large-scale chromosomal differences between human

and mouse. The sequences in the mouse genome are colored according to their simi-

larity counterparts (or homology) in the human genome. We can observe that a stretch

of DNA in human can be scattered into different places in mouse. The figure illus-

trates about 100 large homologous pieces between human and mouse. In other words,

if we cut the human genome into these pieces, we can rearrange them to make a

genome similar to that of the mouse genome. We now know that these differences are

caused by chromosomal changes that happened in the past, some time after the human

and mouse diverged (approximately 80 million years ago (MYA)). However, can we
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Figure 11.1 This figure illustrates the genomic differences between mouse and human. There
are about 100 homologous segments (i.e. the segments in human and mouse share common
ancestry) in total illustrated here. The colors and corresponding numbers next to the mouse
chromosomes indicate the human counterparts. Figure adapted from the original figure
courtesy of Lawrence Livermore National Laboratory.

determine when these changes happened? Did they happen on the human lineage after

human–mouse divergence or on the mouse lineage?

In fact, if we compare only the human and mouse genomes, we cannot answer this

question. Since they both evolved from a common ancestor, more species are needed

to determine when the genomic rearrangements happened after human and mouse

diverged. Figure 11.2 illustrates mammalian evolution. The phylogenetic tree shows

the evolutionary relationships between human and some representative mammalian

species, from the closest relative chimpanzee (divergence time 4–5 MYA), to platypus,

which shares a mammalian common ancestor with human approximately 160 MYA.

We are particularly interested in the changes in molecular evolution along the branch

toward modern human, because those genomic innovations may greatly contribute to

distinguishing human from other mammalian species. Hence, systematic comparative

genomic analysis will shed light on one of the most exciting questions in science –

how did we become human?

We know that the differences between mammalian genomes in Figure 11.2 are

the result of evolutionary changes after their divergence from their common ances-

tor. For example, almost all placental mammals share a common ancestor, called the

Boreoeutherian common ancestor. Over the last 100 million years, that ancestor’s
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Figure 11.2 The phylogeny of mammalian species. Modified from figure 1 in [2] with the
relationship among Boreoeutheria, Xenarthra, and Afrotheria adjusted based on [3].

descendants have evolved into a complex array of different placental mammals – about

5,000 currently living on the planet. As the result of speciation events and many sig-

nificant changes in each lineage, we see remarkable differences among living placental

mammals, both genetic and morphological. If we could somehow obtain the genome

of those ancestral species at the precise moment of speciation for each branch in the

phylogenetic tree in Figure 11.2, we would be able to compare two genomes on both

sides (one ancestor and one descendant) and determine exactly what happened during

a particular period of time in mammalian evolution. That would be incredibly excit-

ing, since this unraveled trajectory would tell us how the human genome reached its

present state of evolution. Sadly, although new technologies allow us to get DNA from

specimens of some relatively recent ancient species, e.g. Neanderthal [4] and woolly

mammoth [5], we cannot directly obtain DNA sequences older than a million years.

However, the mammalian genomes already sequenced and the additional diverse set of

mammalian species that will be sequenced in the future give us an alternative approach.
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Figure 11.3 Part of the reconstructed history of the ACYL3 gene (NM 177028), which was
lost in both human and chimpanzee. Boreoeutherian = the reconstructed sequence in the
Boreoeutherian ancestor; euArc refers to the Euarchontoglires ancestor; primate refers to the
primate common ancestor; and here ape refers to the human–chimpanzee common ancestor.
The G to A transition is highlighted in the DNA multiple sequence alignment (top). The
consequence, a change from a tryptophan codon (W) to a stop codon, is also illustrated in
the alignment with codon translation (bottom).

1.3 Genome reconstruction provides an additional dimension for
comparative genomics
All placental mammals living today show a wide range of variation. However, since

these species are descended from a common ancestor, they all have inherited specific

DNA sequences from the ancestral genome. Therefore, given the genomes of related

species, we can use computational analysis to work backwards and determine most

of the specific DNA changes that probably occurred, reconstructing the history of the

genetic changes for all the individual bases. With the reconstructed history, we will be

able to explain the genomic changes on any given lineage, including the human lineage.

This will provide an extremely illuminating vertical map, in the sense that we can view

the evolutionary changes from past to present directly, decoding the molecular basis

for the extraordinary diversity of mammalian forms and capabilities.

Here, we use two examples to show that genome reconstruction can provide an

additional dimension for comparative genomics analysis and facilitate discoveries.

Figure 11.3 shows a gene called acyltransferase 3 (ACYL3), which was present in

archaea, bacteria, and eukaryotes. ACYL3 is still found in the genomes of many

mammals, such as rhesus, rat, mouse, and dog, but has been lost in both human and

chimpanzee [6]. What happened? Figure 11.3 illustrates the reconstructed history of

this gene, which gives us a direct sense of what transpired from past to present. A close

look reveals that there was a G to A transition that happened after the primate common

ancestor and before the ape common ancestor. This nonsense mutation changed the

tryptophan codon (W) to a stop codon and made this gene non-functional.
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Figure 11.4 Part of the reconstructed history of the Human Accelerated Region 1 (HAR1).
Mutations that accumulated in human after diverging from the chimpanzee common ancestor
are highlighted.

The second example is a region called Human Accelerated Region 1 (HAR1) [7]

with 118 base pairs. Almost all the bases are conserved in mammalian species; fur-

thermore, only two bases differ between chimpanzee and chicken (310 MY divergence

time). However, human has surprisingly accumulated 18 substitutions since human

and chimpanzee divergence. Figure 11.4 shows the reconstructed history of part of the

HAR1 region, highlighting 11 of the 18 substitutions. Scientists believe that this region

has experienced accelerated evolution in the human genome due to positive selection.

It turns out that HAR1 is part of a novel RNA gene that is expressed specifically during

a critical window in embryonic development for a specific set of neurons that guide

the development of the layers of the cerebral cortex.

The above examples have demonstrated that if we can create such a reconstructed

evolutionary history, we will be able to make many discoveries like this, which will

be enormously exciting for human biology. But what kind of computational methods

should we use to create such a vertical map that documents all the important genomic

changes in mammalian evolution?

1.4 Base-level ancestral reconstruction
In addition to point mutations, which are the most common small-scale genomic

changes, various other types of genomic changes can occur. In multiple alignment for

sequences from different species, we often see gaps in some of the sequences. What

do those gaps mean? Let’s examine the following example.

human ATCAGC------GGCGAT

chimp ATCAGC------GGCGAT

macaque ATCAGCCGGATCGGCGAT

mouse ATCAGCCGGATCGGCGAT

rat ATCAGCCGGATCGGCGAT

dog ATCAGCCGGATCGGCGAT

cow ATCAGCCGGATCGGCGAT
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Actually, the gaps in the alignment correspond to insertion and deletion (indel)

events. In the above example, we can infer that the gaps in human and chimpanzee

reflect a deletion event that happened before human–chimp common ancestor but after

human–macaque common ancestor, which by the principle of parsimony is more likely

than any other scenarios. Determining the most plausible indel scenario is the basic

idea of inferring indel events from the multiple alignment.

Note that the quality of multiple alignment is critically important for base level

reconstruction. The reconstruction methods usually assume that the alignments are

evolutionarily correct, i.e. all the bases are placed in the same alignment column

as long as they are derived from the same ancestral base, and the boundaries of

gaps are placed perfectly consistently with the indel events. Unfortunately, perfect

alignment is in practice hard to achieve, especially for genomic regions that have

repeatedly undergone various types of genomic changes. The good news is that the

majority of the mammalian genomes can be aligned with high confidence. Blanchette

et al. (2004) [8] showed that given a large genomic region in which there has been

no shuffling of bases since the most recent common ancestor, the Boreoeutherian

ancestral sequence can be recovered with an accuracy as high as 98% from only 20

optimally chosen modern mammals. Now, how can we reconstruct the entire ancestral

genome? The challenge remains: for whole-genome analysis, we must consider large-

scale chromosomal changes between different species.

2 Cross-species large-scale genomic changes

2.1 Genome rearrangements
A chromosome is a thread-like macromolecular complex. In eukaryotic cells, chro-

mosomes have a linear form rather than circular. Each chromosome has two arms; the

shorter one is called the p arm, while the longer one is the q arm. A chromatid is one of

the two identical parts of the chromosome after the synthesis phase. Two chromatids

are attached at an area called the centromere. The telomere is the region found at either

end of a linear chromosome.

Different kinds of organisms have different numbers of chromosomes. For example,

humans have 23 pairs of chromosomes, dogs have 39 pairs, and mice have 20 pairs.

A graphic representation of all the chromosomes in a cell of any species is called

a karyotype. Karyotype diversity among different species is caused by chromosome

rearrangements. Dobzhansky and Sturtevant (1938) [9] reported the observation of

inversion events between two Drosophila species, thus pioneering the study of chro-

mosome rearrangement. Since then, many studies have concentrated on understanding
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(c) Translocation(b) Fusion and Fission(a) Inversion

Figure 11.5 Different types of genomic rearrangements. Each green or red rectangle is a
chromosome. In each figure, the large arrow indicates what the chromosomes look like before
and after the rearrangement operation.

the differences between genome architectures from an evolutionary perspective.

These rearrangements are genomic “earthquakes” [10] that change the chromosomal

architecture of an organism. We know that there are a number of different types of

rearrangement operations that can be accumulated during chromosomal evolution. In

general, these rearrangements are comprised of inversions, translocations, fusions, and

fissions.

Figure 11.5 illustrates these four rearrangement operations. In an inversion oper-

ation, a genomic segment on one chromosome is reversed and complemented (e.g.

AAGTCAT becomes ATGACTT). In a translocation operation, the end part of one chro-

mosome is swapped with the end of another chromosome. In a fusion operation, two

chromosomes are joined to form one chromosome; while in a fission operation, a sin-

gle chromosome is broken into two chromosomes. Among these operations, inversions

are the most common events in chromosomal evolution. For translocations, there are

two main types, reciprocal (as shown in Figure 11.5c) and Robertsonian. A Robert-

sonian translocation involves two chromosomes, in which their long arms fuse at the

centromere and the remaining two short arms are lost. It has been suggested that

Robertsonian translocation also occurred in mammalian genome evolution.

In the general mathematical model of chromosome evolution, a chromosome can be

represented as a string of signed numbers (or signed permutation), and a genome as a

set of these strings, e.g. 1 2 3 4 5 • 6 7 8, where • separates chromosomes. Numbers

could represent any genomic content, e.g. a single base, a gene, or a longer DNA

sequence. Numbers have signs, either + or −, which indicate the relative orientation

of the genomic content.

Here are some examples of chromosome rearrangements within this mathematical

structure. Inversion: 1 2 3 4 5 • 6 7 ⇒ 1 –4 –3 –2 5 • 6 7 (in bioinformatics literature,

inversion is also called reversal); translocation: 1 2 3 4 5 • 6 7 ⇒ 1 7 • 6 2 3 4 5;

fusion: 1 2 3 4 5 • 6 7 ⇒ 1 2 3 4 5 6 7; fission: 1 2 3 4 5 • 6 7 ⇒ 1 2 • 3 4 5 • 6 7.

Overlapping or nested operations form composite operations. For example, 1 2 3 4

5 6 7 can be transformed to 1 –4 –6 • –5 2 3 7 by two overlapping inversions followed
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by a fission: 1 2 3 4 5 6 7 ⇒ 1 –4 –3 –2 5 6 7 ⇒ 1 –4 –6 –5 2 3 7 ⇒ 1 –4 –6 •
–5 2 3 7.

2.2 Synteny blocks
Identifying the genomic content that signed permutations can represent has always

been an essential problem in studying genome rearrangements. Nadeau and Tay-

lor (1984) [11] first introduced the term “conserved segment” to name a maximal

genomic segment with preserved gene orders that are not disrupted by rearrange-

ments between species. In the past decade, using comparative gene mapping to find

orthologous gene loci as the evolutionary markers played an important role in testing

algorithms and understanding rearrangement scenarios (the term “orthologous” means

that two loci share the same ancestry). However, although this approach works well in

small genomes, e.g. virus genomes or mitochondrial genomes, reliable gene annota-

tion and orthology assignment in the entire mammalian genome are technically very

difficult, partly because of the great number of duplicated genes existing in mammals.

This problem is further complicated by the large proportion of non-coding regions

throughout the genome.

Pevzner and Tesler (2003) [12] proposed the GRIMM-Synteny algorithm to par-

tition the genomes into segments which tolerate a certain amount of local micro-

rearrangements that are smaller than the size of the segments. These segments are

called “synteny blocks,” which conceptually is similar to conserved segments. Based

on this method, multi-way synteny blocks can be created for multiple species. The

GRIMM-Synteny algorithm greatly improved the resolution and precision for whole-

genome rearrangement studies.

In recent years, improved whole-genome alignments have allowed us to produce

synteny blocks with higher coverage and higher resolution for ancestral genome recon-

struction. Ma et al. (2006) [13] describe one of these methods. The basic idea can be

summarized in Figure 11.6. If two synteny blocks are adjacent in one species and

separate in the other, that reflects a breakpoint between these two species. The algo-

rithm processes the whole-genome alignment and partitions the genome every time it

encounters a breakpoint in one of the species. In the example in Figure 11.6, if we set

the synteny block threshold as 50 kb (i.e. any rearrangements smaller than 50 kb are

ignored), this region can be partitioned into 5 synteny blocks.

When we construct synteny blocks, resolution (size threshold) is always a factor

to consider (low resolution = large blocks and high resolution = small blocks). If we

construct higher-resolution synteny blocks, we can capture more interesting rearrange-

ments, but the smaller ones may not be very reliable due to potentially problematic

sequence alignment. If we build lower-resolution synteny blocks, we will have more
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Figure 11.6 Constructing synteny blocks based on whole-genome alignment. (a) A region on
human chromosome 13 and its corresponding regions in mouse, rat, and dog (based on their
pairwise alignments with human). Different colors refer to different chromosomes in dog, rat,
and mouse. This is a snapshot of the UCSC genome browser for this region on human
chromosome 13. Each track is a pairwise alignment net between human and a secondary
species. In the figure, net identifies putative orthologous genomic segments between two
genomes. Level 1 net shows the primary alignment of the region. For example, this human
region is roughly orthologous to three regions in different chromosomes in mouse (shown by
three colors). Level 2 and beyond show additional nets, which indicate rearrangements (smaller
than level 1). For example, the orthologous region on rat chromosome 12 (the green part) has
a big net as a level 2 net (indicated by an orange arrow), suggesting a rearrangement. (b) An
abstract version of (a), where this genomic region can be partititioned into five synteny blocks.

reliable evolutionary conserved synteny blocks, but we certainly miss a lot of rear-

rangements that are under the size threshold. In Ma et al. (2006) [13], for human,

mouse, rat, and dog, 1,338 synteny blocks (size threshold = 50 kb) were constructed,

covering about 95% of the human genome.

Once we have the synteny blocks, the next step is to figure out what the ancestral

order and orientation of these blocks were in a certain ancestor and what kinds of evo-

lutionary events caused the dramatic shuffling of these blocks in different descendant

species.
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(a)  tandem duplication (b)  segmental duplication

Figure 11.7 (a) Tandem duplication, where the two copies are adjacent to each other after
the duplication. (b) Segmental duplication, where the target copy is far away from the source
copy after the duplication.

2.3 Duplications and other structural changes
Besides the rearrangement operations mentioned above, chromosome architecture can

also be changed by other large-scale operations. For example, transposition is a more

complicated rearrangement in which a segment of DNA is removed from its original

location and then gets inserted into a new location. Duplication is another major source

of large-scale genomic change. There are generally two types of duplication events,

tandem duplication and segmental duplication (Figure 11.7). In addition, large-scale

insertion and deletion can also happen. Even more complex operations are occasionally

observed in human disease-associated genome rearrangements [14].

All these operations may happen in nested or overlapping forms during evolution.

As a result, genomic architectures between different modern species can be highly

distinct. An ancestral genomic segment can be broken into several fragments in an

extant genome and widely scattered to different chromosomes and different positions

(e.g. Figure 11.1).

3 Reconstructing evolutionary history

3.1 Ancestral karyotype reconstruction
In fact, the problem of ancestral mammalian karyotype reconstruction has been studied

for quite a long time. The development of comparative gene mapping and cytogenetic

methods have provided biologists with powerful tools in their attempt to solve the

puzzle. However, the number of chromosomes in the mammalian common ancestor is

still not fixed and is believed that 24 or 25 is currently the best guess. Even though there

is no solid evidence of the number of chromosomes in the ancestral eutherian karyotype,

some configurations have been widely confirmed, e.g. Hsa14/Hsa15 (“Hsa” refers to a

human chromosome.), which means human chromosome 14 and chromosome 15 were

in the same ancestral chromosome (in other words, a chromosomal fission happened

on the path leading to human).
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Figure 11.8 (a) One of the most parsimonious solutions of sorting by reversal between A and
B . (b) An example of the Median Problem. The median M = 1 2 3 −4 −5 6 −8 −7, with
d(A , M ) + d(B , M ) + d(C , M ) = 8.

In the past decade, the primary experimental technique used in the study of chro-

mosomal evolution is chromosome painting, in which fluorescently labeled chromo-

somes from one species are hybridized to chromosomes from another species so that

breakpoints can be identified. Although the requirement of optical visibility means

that the chromosome painting approach can only recognize rearrangements with long

conserved segments and cannot identify intrachromosomal rearrangements, the chro-

mosomal painting approach has the advantage that data are available for more species

because we do not need to sequence the genome.

3.2 Rearrangement-based ancestral reconstruction
Indeed, for the past 15 years, genome rearrangement problems have fascinated com-

putational biologists. Computer scientists have also tried to reconstruct the ancestral

genome architecture using bioinformatic algorithms in a parsimony framework based

on certain distance measurements.

Sankoff pioneered the theoretical study of reversal distance [15] and phylogenetic

analysis using gene order data [16]. The analysis of the most parsimonious rearrange-

ment scenarios is the central part of theoretical genome rearrangement study, among

which the most well studied is sorting by reversals. Sorting by reversals is the problem

of converting one permutation into another using the minimum number of reversal

operations. The minimal number of reversals is regarded as reversal distance between

two permutations. For example, in Figure 11.8(a), the reversal distance between A and

B, abbreviated d(A, B), is 7 because 7 is the minimum number of inversions needed

to transform A into B. For these kind of signed permutations, which are practically

very important to model mammalian genomes, Hannenhalli and Pevzner (1995) [17]

gave the first efficient algorithm to solve the sorting by reversal problem.
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humanmouse ratdog

Figure 11.9 The phylogeny of human, mouse, rat, and dog.

However, when we need to use reversal distance to perform phylogenetic analysis (in

which we need more than two species), the problem suddenly becomes computationally

intractable. A typical problem is the Median Problem: given three signed genomes A,

B, and C , as well as the distance measure d, find a median genome, which is a

genome M such that
∑

d = d(A, M) + d(B, M) + d(C, M) is minimal, as illustrated

in Figure 11.8(b). Unfortunately, this problem is computationally intractable. Note that

the Median Problem is the simplest problem for the genome reconstruction problem

based on reversal distance, in which we have two descendant genomes A and B as well

as an outgroup species C . However, there are heuristic approaches available to solve

this problem, e.g. multiple genome rearrangements (MGR) [18].

3.3 Adjacency-based ancestral reconstruction
Two synteny blocks are adjacent if they are next to each other on a chromosome. Ma

et al. (2006) [13] observed that the adjacencies of genomic content in modern species

can be used to infer the ancestral adjacencies. The problem can be described as: given

a tree, predict the ancestral order and orientation based on adjacencies in modern

genomes. That is, consider the end of a synteny block x that does not correspond to a

human telomere or centromere. How can we identify the segment that was adjacent to

x in the ancestral genome?

If the segment that is currently adjacent in human is identical to the one that is

adjacent in dog (but a different segment is adjacent in mouse and rat), the most

parsimonious assumption (based on the phylogeny of human, mouse, rat, and dog

as shown in Figure 11.9) is that the first and second segments were adjacent in the

ancestral genome (and that a disruption occurred in the rodent lineage at this genomic

position).

If the same segment is adjacent to the chosen segment in human, mouse, and rat, but

not in dog, we need more information to confidently predict the ancestral configuration,

since there is a chance that the dog adjacency is ancestral and that the breakage occurred

on the short branch from the human–dog ancestor to the human–rodent ancestor. To
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help resolve these cases, we can add outgroup information, e.g. the opossum sequence.

Figure 11.10 shows an example that demonstrates this principle. This snapshot from

the UCSC genome browser clearly shows the relative orientations from which the

ancestral orientation can be inferred by parsimony. This region can be partitioned

into three synteny blocks: 1, 2, and 3. Human, rhesus, mouse, and rat share the order

1 2 3, while dog and opossum have the order 1 –2 3. Based on the parsimony principle

discussed above, we can infer that 1 is followed by –2 and 3 is preceded by –2 in the

human–dog common ancestor, which creates the ancestor order 1 –2 3. How can we

generalize this procedure algorithmically?

The approach is inspired by Fitch’s method [19], which was originally used to infer

minimum substitutions in a specified tree topology. For that problem, one is given a

phylogenetic tree and a letter for every position in each leaf of the tree (corresponding

to the contents of orthologous sequence sites). The problem is to infer the ancestral

letters (corresponding to internal nodes of the tree), so as to minimize the number of

substitutions, i.e. differences between the letters at each end of an edge in the tree.

The algorithm works sequentially, in two stages. For each position, in a bottom-up

fashion, it first determines a set Mπ of candidate nucleotides at each node π in the tree

according to the following rule: if π is a leaf, Mπ just contains its nucleotide character;

otherwise, if π has children τ and ϕ, then Mπ equals either intersection Mτ ∩ Mϕ or

the union Mτ ∪ Mϕ depending on whether Mτ and Mϕ are disjoint or not. That is,

if Mτ and Mϕ do not overlap

then Mπ ← Mτ ∪ Mϕ

else Mπ ← Mτ ∩ Mϕ

Then, in a top-down fashion, it assigns a character bπ from Mπ to π according

to the following rule: let ρ be the parent of π ; if the character bρ assigned to ρ

belongs to Mπ , then, bπ = bρ . Otherwise, set bπ to be any character in Mπ . Although

character assignment in this second stage may not be unique, any assignment gives an

evolutionary history with the minimum number of substitution events.

The rationale behind Fitch’s method is as follows. If the character bπ belongs to

both children of π , then an optimal strategy for labeling nodes in the subtree rooted

at π is to put b at each of π , τ , and ϕ, and label the subtrees of τ and ϕ optimally. If

there is no such b, then the strategy is to put a character from either Mτ or Mϕ at π ,

pay for one substitution to reach the other child, and optimally label the two subtrees.

See Figure 11.11 for an example. The characters at leaves are given. Then we do a

post-order tree traversal (i.e. visiting each node in the tree by recursively processing all

subtrees and finally processing the root) and create sets in the internal nodes until we

reach the root. In this example, the ancestral nucleotide A will give us the minimum

number of substitutions, which is 2, for this position.
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Figure 11.10 (a) is the phylogenetic tree of human, rhesus, mouse, rat, dog, and opossum,
where opossum is an outgroup of the placental mammals (all the descendants of the
Boreoeutherian common ancestor). (b) is a snapshot of the UCSC genome browser of this
region. Each track is a pairwise alignment net between human and a secondary species. In this
region, both dog and opossum have level 2 net that reflects an inversion in the alignment with
human. Based on the tree in (a), we infer that the inversion happened on the branch leading
from the Boreoeutherian common ancestor to the Euarchontoglires common ancestor (the
primate-rodent ancestor), as highlighted by the orange arrow. The corresponding human
region is hg18.chr13:57,380,591-57,383,765.
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human {A}

chimp {G}

mouse {T}

dog {A}

{A G}

{A G T}

{A}

Figure 11.11 An example of Fitch’s algorithm.

Let’s now formally prove by induction that the Fitch algorithm constructs the most

parsimonious solution for the total number of substations. Let k(π) denote the minimum

number of substitutions in the subtree rooted at π . Let τ and ϕ be the two children

of π . Basis: if tree height h = 1, then τ and ϕ are leaves in the phylogeny. If τ

and ϕ are the same, then no substitution is needed; k(π) = 0. Otherwise, only 1

substitution is needed; k(π) = 1. Induction: if we assume the Fitch algorithm constructs

the most parsimonious solution for the subtree height is h, then prove this is the case

for height h + 1. If the intersection of Mτ and Mϕ is not empty, then we can have

k(π) = k(τ ) + k(ϕ) by assigning any character in the intersection to π . Otherwise,

k(π) is k(τ ) + k(ϕ) + 1, by assigning any character in the union of Mτ and Mϕ . This

completes the proof.

In our case, we deal with sequences of signed integers, rather than characters of

nucleotides or amino acids, and instead of keeping track of letters at a particular

sequence position, we track the synteny blocks for each of the immediately adjacent

positions. Based on this logic, for a certain ancestor, we can infer what would be the

most parsimonious neighbors of each synteny block in the ancestral genome.

We first define predecessor and successor. If modern genome g contains synteny

block i , then the predecessor pg(i) is defined as the signed block that immediately

precedes i on the same chromosome relative to the original orientation. In the opposite

orientation, pg(−i) immediately precedes −i in the reverse complement of the same

chromosome. We set pg(i) = φ if i appears first on a chromosome. The successor

sg(i) of i is defined analogously; we set sg(i) = φ if i appears last on a chromosome.

For instance, let g have the chromosome (1 −4 −3 5 2). Then in the positive ori-

entation, we have: pg(1) = 0, pg(2) = 5, pg(−3) = −4, pg(−4) = 1, pg(5) = −3,

while sg(1) = −4, sg(2) = 0, sg(−3) = 5, sg(−4) = −3, sg(5) = 2. In the opposite

orientation, (−2 − 5 3 4 − 1), we have: pg(−1) = 4, pg(−2) = 0, pg(3) = −5,

pg(4) = 3, pg(−5) = −2, while sg(−1) = 0, sg(−2) = −5, sg(3) = 4, sg(4) = −1,

sg(−5) = 3.
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We consider keeping track of the set of all possible synteny blocks that follow a

fixed synteny block in a most parsimonious evolutionary scenario. In the genome that

corresponds to node π , block i could be followed by any block that follows i in both

τ and ϕ, without requiring any rearrangements on the branches leading from π to

its children. Otherwise, i can be followed by any block that follows i in one of π ’s

children, at the cost of a chromosomal break next to i along the branch leading from π

to the other child. This is all closely analogous to the case of substitutions, as sketched

above.

Thus, for any genome g, we associate with each block i two sets of signed blocks,

denoted Pg(i) and Sg(i), giving potential predecessors and successors of i relative to

chromosomes of g. If g is a modern genome, Pg(i) = {pg(i)} and Sg(i) = {sg(i)}, for

each i . If g does not contain i , then both sets are empty.

The algorithm GET-PREDECESSOR-SUCCESSOR(R) constructs Pg(i) and Sg(i) for each

synteny block i of every ancestral genome g in the tree (π is a tree node; τ and ϕ are

π ’s children in the tree; N is the total number of synteny blocks).

GET-PREDECESSOR-SUCCESSOR (π )

1 if π is non-leaf node
2 then GET-PREDECESSOR-SUCCESSOR (τ )
3 GET-PREDECESSOR-SUCCESSOR (ϕ)
4 for i ← −N to N (i 
= 0)

5 do if Pτ (i) and Pϕ(i) do not overlap
6 then Pπ (i) ← Pτ (i) ∪ Pϕ(i)

7 else Pπ (i) ← Pτ (i) ∩ Pϕ(i)

8 if Sτ (i) and Sϕ(i) do not overlap
9 then Sπ (i) ← Sτ (i) ∪ Sϕ(i)

10 else Sπ (i) ← Sτ (i) ∩ Sϕ(i)

Finally, there is an algorithm to connect the synteny blocks in the ancestor based on

possible predecessor/successor relationships into continuous ancestral regions (CARs)

which resemble ancestral chromosomes. Using 1,338 synteny blocks constructed from

human, mouse, rat, and dog, the karyotype of the Boreoeutherian ancestral genome

(shown in Figure 11.12) can be reconstructed with relatively high accuracy [13, 20].

The accuracy can be assessed by comparing with experimental chromosomal painting

results and computational simulations.

3.4 Challenges and future directions
The method discussed in the previous section, which was based on adjacencies of

synteny blocks, reduced the number of discrepancies between computational and
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Figure 11.12 Map of the Boreoeutherian ancestral genome. Numbers above bars indicate the
corresponding human chromosomes. 1,338 synteny blocks are constructed from whole
genome sequences of human, mouse, rat, and dog (size threshold = 50 kb, covering about
95% of the human genome).

experimental large-scale genome reconstruction. The result, in much higher resolution

than previous studies, has proven to be reliable [20]. However, such an adjacency-based

reconstruction, albeit undoubtedly informative, provides no direct knowledge of the

detailed evolutionary operations transforming the ancestor to the present day genomes.

Therefore, models that handle sophisticated genomic operations are needed.

With regard to models of evolutionary operations, a key step was the unification

of inversion, translocation, fusion, and fission into the general operation of double-

cut-and-join (DCJ) [21] (also termed as “2-break operation,” see Figure 11.13). Other

types of operation were also studied, e.g. transposition and indels. More importantly,

duplications cannot be left out of the analysis given their critical role in mammalian

evolution. Regarding recovering complex operations on genomes, a recent paper by

Ma et al. [22] formalized the problem of recovering (by parsimony) the evolutionary

history of a set of genomes that are related to an unseen common ancestor genome by



11 Reconstructing the history of large-scale genomic changes 219

1 2

3 4

1 –3

–4 2

1 4

3 2

reciprocal
translocation

reciprocal
translocation

reciprocal
translocation

1 2 3

1 –2 3

1

2

3

inversion

circularized
incision

circularized
excision

circularized
excision

circularized
incision

(a) (b)

Figure 11.13 2-break operations, in which we break the genome in two places, creating four
free ends, and then we rejoin the four free ends. (a) Two breakpoints are on the different
chromosomes. This models translocation. (b) Two breakpoints are on the same chromosome.
This models inversion and indels.

operations of deletion, insertion, duplication, and rearrangement of segments of bases,

and by speciation events. The authors show that as the number of bases (“sites”) in

the genome approaches infinity, the problem of reconstructing the simplest history of

operations becomes tractable.

There are a number of computational challenges ahead. For example, so far most

algorithms assume that each operation is equally likely to happen in the genome. To

be more realistic, each of the different types of operations could have a different cost,

and the goal would be to find an evolutionary history with minimal total cost. This

method is called weighted parsimony. Models that consider weighted parsimony based

on empirical data from practice will be very useful.

In addition, breakpoint reuse, in which the same genomic location is broken more

than once during evolution, arises in real data, partly because the synteny block con-

struction method often cannot pinpoint the breakpoint to 1-base resolution. It is also

still a challenge to locate more precise breakpoints caused by structural changes, widely

believed to contain enriched genomic variation and very interesting biology [23].

4 Chromosomal aberrations in human disease genomes

Many individual human genomes have been entirely sequenced, including Nobel Lau-

reate James Watson, a Han Chinese, a Korean, Yoruban individuals, etc. These data

revealed that, between different normal human individuals, our genomes also show
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Figure 11.14 Fusion genes in cancer genomes. (A) CACNA2D4-WDR43 fusion gene identified
in the NCI-H2171 lung cancer cell line. The 5′ portion of the CACNA2D4 gene is amplified. A
rearrangement breaks the gene in exon 36, fusing it into intron 3 of WDR43. The sequence at
the breakpoint creates an almost perfect splice-donor site, resulting in a fusion transcript with
a shortened exon 36 from CACNA2D4. Figure (A) and caption are from [24]. (B) ETV6-ITPR2
fusion gene in the primary breast cancer PD3668a. [B-a]: Across-rearrangement PCR to confirm
the rearrangement in genome. [B-b]: RT-PCR of RNA between ETV6 exon 2 and ITPR exon 35
to confirm the expressed transcript. N, normal; T, tumor. [B-c]: Diagram of the protein domains
fused in the ETV6-ITPR2 fusion protein. [B-d]: Sequence from RT-PCR product shown in B-b
confirming ETV6 exon 2 fused to ITPR2 exon 35. Figure (B) and caption are from [25].

a large amount of structural variation. One may wonder: how representative is the

reference human genome sequenced by the Human Genome Project a decade ago?

We now know that many human diseases are associated with structural genomic

changes. New technologies are allowing researchers to map disease-causing structural

changes to the genome in much finer resolution. When multiple changes have occurred

to the genome and created a genetic state that causes diseases, the algorithms of

genome reconstruction discussed above may be useful in better understanding the

detailed scenario of these changes, as well as identifying the specific operations that

have occurred and the properties of the DNA sequences near their breakpoints.

Cancer is another group of genetic diseases associated with a massive amount of

structural genomic changes. Much as germline genomes undergo various chromosomal

structural changes over an evolutionary timescale, the genomes of somatic cells also

undergo structural changes during cancer progression, including rearrangements, inser-

tions and deletions, and duplications. Recent rapid advancement in high-throughput

sequencing technologies have enabled us to use paired-end reads to map novel DNA
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segment adjacencies caused by different types of rearrangements in individual tumor

genomes. A paired-end read consists of two stretches of sequenced DNA with an unse-

quenced insert of known size between them. Thus, after mapping the paired-end read

from a tumor genome to a normal genome, if the distance between those two stretches

of DNA changes, then we know there must be a structural genomic change. Interested

readers can read [26] for computational approaches to utilize paired-end data.

Figure 11.14(A) shows a CACNA2D4-WDR43 fusion gene in NCI-H2171, a lung

cancer cell line [24]. Figure 11.14(B) shows an ETV6-ITPR2 fusion gene generated by

a 15-Mb inversion in breast cancer sample PD3668a [25]. Stephens et al. (2009) [25]

reported rearrangement patterns in 24 breast cancer genomes. With these cancer break-

point data coming in, the rearrangement-based algorithms may help us better dissect

the evolutionary history of individual tumors and understand molecular signatures of

different cancers.

DISCUSSION

Our ability to sequence the entire human genome and other mammalian species
has given us an unprecedented opportunity to peer into our origins and decode
our own genomes. Based on computational analysis of the genomes of modern
mammals, it would be extremely exciting to discover the critical genetic changes
that led to the remarkable differences among these species. As the genomic data
grow exponentially, the idea of ancestral genome reconstruction is an elegant
way to organize a large number of related species, creating a vertical map so that
we can navigate the genomes and trace the history from past to present. Even
when we study genomic variation in the human population and human disease
genomes, it is always important to put the genomic data into the evolutionary
context to approach these problems. As Theodosius Dobzhansky said: “Nothing
in biology makes sense except in the light of evolution.”

QUESTIONS

(1) Assume that the synteny block A is followed by B in human, but it is followed by C in
chimpanzee, mouse, and dog. What would be the most parsimonious situation for the
block that follows A in the human–chimpanzee common ancestor?
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(2) Based on Figure 11.12, the map of the Boreoeutherian ancestral genome, identify the
interchromosomal breakpoints that occurred on the branch leading to human.

(3) How can we evaluate the performance of the algorithm GET-PREDECESSOR-SUCCESSOR?
If you choose a simulation-based approach, what kind of experiment will you
design?

REFERENCES

[1] W. Miller, K. Makova, A. Nekrutenko, and R. Hardison. Comparative genomics. Annu. Rev.
Genomics. Hum. Genet., 5:15–56, 2004.

[2] E. Margulies, G. Cooper, G. Asimenos, et al. Analyses of deep mammalian sequence
alignments and constraint predictions for 1% of the human genome. Genome Res.,
17(6):760, 2007.

[3] W. Murphy, T. Pringle, T. Crider, M. Springer, and W. Miller. Using genomic data to unravel
the root of the placental mammal phylogeny. Genome Res., 17(4):413–421, 2007.

[4] R. Green, J. Krause, S. Ptak, et al. Analysis of one million base pairs of Neanderthal DNA.
Nature, 444:330–336, 2006.

[5] W. Miller, D. Drautz, A. Ratan, et al. Sequencing the nuclear genome of the extinct woolly
mammoth. Nature, 456(7220):387–390, 2008.

[6] J. Zhu, J. Sanborn, M. Diekhans, C. Lowe, T. Pringle, and D. Haussler. Comparative
genomics search for losses of long-established genes on the human lineage. PLoS Comput.
Biol., 3(12):e247, 2007.

[7] K. Pollard, S. Salama, N. Lambert, et al. An RNA gene expressed during cortical
development evolved rapidly in humans. Nature, 443:167–172, 2006.

[8] M. Blanchette, E. Green, W. Miller, and D. Haussler. Reconstructing large regions of an
ancestral mammalian genome in silico. Genome Res., 14(12):2412–2423, 2004.

[9] T. Dobzhansky and A. Sturtevant. Inversions in the chromosomes of Drosophila
pseudoobscura. Genetics, 23(1):28–64, 1938.

[10] M. Alekseyev and P. Pevzner. Are there rearrangement hotspots in the human genome.
PLoS Comput. Biol., 3(11):e209, 2007.

[11] J. Nadeau and B. Taylor. Lengths of chromosomal segments conserved since divergence of
man and mouse. Proc. Natl Acad. Sci. U S A, 81(3):814–818, 1984.

[12] P. Pevzner and G. Tesler Genome rearrangements in mammalian evolution: Lessons from
human and mouse genomes. Genome Res., 13(1):37–45, 2003.

[13] J. Ma, L. Zhang, B. B. Suh, et al. Reconstructing contiguous regions of an ancestral
genome. Genome Res., 16(12):1557–1565, 2006.

[14] J. Lee, C. Carvalho, and J. Lupski. A DNA replication mechanism for generating
nonrecurrent rearrangements associated with genomic disorders. Cell, 131(7):1235–1247,
2007.



11 Reconstructing the history of large-scale genomic changes 223

[15] D. Sankoff. Edit distances for genome comparisons based on non-local operations. In:
Combinatorial Pattern Matching, pp. 121–135, 1992.

[16] D. Sankoff, G. Leduc, N. Antoine, B. Paquin, B. F. Lang, and R. Cedergren. Gene order
comparisons for phylogenetic inference: Evolution of the mitochondrial genome. Proc. Natl
Acad. Sci. U S A, 89(14):6575–6579, 1992.

[17] S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: Polynomial algorithm
for sorting signed permutations by reversals. In: ACM Symposium on Theory of Computing,
pp. 178–189, 1995.

[18] G. Bourque and P. A. Pevzner. Genome-scale evolution: Reconstructing gene orders in the
ancestral species. Genome Res., 12(1):26–36, 2002.

[19] W. M. Fitch. Toward defining the course of evolution: Minimum change for a specific tree
topology. Syst. Zool., 20:406–416, 1971.

[20] M. Rocchi, N. Archidiacono, and R. Stanyon. Ancestral genomes reconstruction: An
integrated, multi-disciplinary approach is needed. Genome Res., 16(12):1441, 2006.

[21] S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of genomic permutations by
translocation, inversion and block interchange. Bioinformatics, 21(16):3340–3346, 2005.

[22] J. Ma, A. Ratan, B. J. Raney, B. B. Suh, W. Miller, and D. Haussler. The infinite sites model
of genome evolution. Proc. Natl Acad. Sci. U S A, 105(38):14254–14261, 2008.

[23] D. Larkin, G. Pape, R. Donthu, L. Auvil, M. Welge, and H. Lewin. Breakpoint regions and
homologous synteny blocks in chromosomes have different evolutionary histories.
Genome Res., 19(5):770–777, 2009.

[24] P. Campbell, P. Stephens, E. Pleasance, et al. Identification of somatically acquired
rearrangements in cancer using genome-wide massively parallel paired-end sequencing.
Nat. Genet., 40(6):722–729, 2008.

[25] P. J. Stephens, D. J. McBride, M. L. Lin, et al. Complex landscapes of somatic
rearrangement in human breast cancer genomes. Nature, 462:1005–1010, 2009.

[26] P. Medvedev, M. Stanciu, and M. Brudno. Computational methods for discovering
structural variation with next-generation sequencing. Nat. Methods, 6:13–20, 2009.





PART IV

PHYLOGENY





CHAPTER TWELVE

Figs, wasps, gophers, and lice:
a computational exploration
of coevolution

Ran Libeskind-Hadas

This chapter explores the topic of coevolution: the genetic change in one species in response
to the change in another. For example, in some cases, a parasite species might evolve to
specialize with its host species. In other cases, the relationship between two species may be
mutually beneficial and coevolution may serve to strengthen the benefits of that relationship.

One important way to study the coevolution of species is through a computational
technique called cophylogeny reconstruction. In this technique, we first obtain the evolutionary
(phylogenetic) trees for the two species and then try to map one tree onto the other in the
“simplest” (most parsimonious) possible way. We can then use these mappings to determine
how likely it is that the two species coevolved.

This chapter begins with descriptions of several pairs of species that are believed to have
coevolved: figs and the wasps that polinate them; gophers and the lice that infest them; and
a bird species that “tricks” another species to tend to its young. Next, we describe the
cophylogeny reconstruction problem, its computational complexity, and a technique for finding
good solutions for this problem. Finally, the reader is invited to use this computational
method – through a freely accessible software package called Jane – to investigate the
relationships between the pairs of species described at the beginning of the chapter.

Bioinformatics for Biologists, ed. P. Pevzner and R. Shamir. Published by Cambridge University Press.
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1 Introduction

I can understand how a flower and a bee might slowly become, either simultaneously or one
after the other, modified and adapted in the most perfect manner to each other, by the continued
preservation of individuals presenting mutual and slightly favourable deviations of structure.
(Charles Darwin, The Origin of Species)

The prescient thought experiment that Darwin describes in The Origin of Species is, in

fact, borne out in bees and flowers (as documented in the book The Sex Life of Flowers

[1]). One particularly interesting example is the symbiotic relationship between figs,

their tiny flowers, and the miniature wasps that pollinate them.1

The story goes something like this. The flowers or “florets” of a fig are in its interior

and are protected by the fig’s thick membrane. Pollinating a fig is a real challenge!

However, each fig species has a species of wasp (usually just one species, but sometimes

more) that pollinates it. When a female wasp of the right species finds a fig that she

likes, she tunnels into the interior, generally losing her wings in the process. Once

inside, she lays her eggs on some of the tiny interior flowers, and, in the process,

pollinates the fig. As the host fig develops, the wasp eggs hatch and the larvae feed

on the fig tissue. After several weeks, the wasps reach maturity. The wingless males

have a short life with only two objectives: they mate with the females and then burrow

holes to help the females escape from the fig. The males then die inside the fig and the

females fly off in search of their own fig homes to repeat the reproductive cycle. This

bizarre story is true [2, 3] and not merely a figment of our imagination!

Biologists refer to the genetic change of one species in response to the change

in another as coevolution. In the case of figs and wasps, the coevolution is known

as mutualism since the two species are mutually dependent on one another for their

survival. While there are several hundred varieties of figs (Ficus) and fig wasps, many

pairs of fig and wasp species have become highly specialized to one another over

approximately 60 million years of evolution.

Coevolution is not always mutually beneficial. For example, there are a variety of

species of pocket gophers and an equal variety of lice that have specialized to their

particular gopher hosts. This form of coevolution, known as parasitism, is a sort of

evolutionary war: the gophers have evolved to defend themselves from the parasitic

lice and the lice have evolved along with them to defeat their hosts’ defenses [4].

A truly bizarre form of parasitism arises between finches from the family Estrildidae

and another family commonly known as indigobirds [5, 6]. Each species of indigobird

has evidently specialized to exploit a specific finch host species. The parasitic indigo-

birds very slyly lay their eggs in the nests of the host finches. The indigobird eggs look

1 Wasps are not bees, but they are in the same order called Hymenoptera.
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virtually identical to the corresponding host finch eggs and the juvenile indigobirds

have markings and begging behaviors that are nearly identical to those of their finch

nestmates. In this way, the parasitic indigobirds trick the host finches into caring for

their eggs and feeding their young!

Finally, an urgent and compelling case of parasitism is the evolution of HIV. Studies

of the evolutionary history of HIV indicate that it has close relatives including SIV

(simian immunodeficiency virus) that infects non-human primates and FIV (feline

strains) that infects cats. Interestingly, SIV and FIV do not appear to have deleterious

effects on their hosts. By understanding the relationships between these different

parasite viruses and their human, non-human primate, and feline hosts, researchers

hope to develop better treatments and, ultimately, vaccines against HIV [7].

Indeed, there are countless cases of coevolution that have been studied, both of

mutually beneficial and parasitic types. How do biologists determine whether two taxa

coevolved and, if there is evidence that they did, what did that coevolution look like?

This is known as the cophylogeny problem and is the topic of this chapter.

2 The cophylogeny problem

While we will soon examine figs and wasps, gophers and lice, and finches and indigo-

birds, let’s begin with a simpler case of contrived taxa that we’ll call Groodies and

Cooties. (Google “Purves Groody” to learn about Groodies.)

Imagine that biologists have observed that Cooties are parasites of their Groody

hosts and have constructed evolutionary histories, or phylogenetic trees, for Groodies

and similarly for Cooties as shown in Figure 12.1.2 The Groody tree is shown in black

on the left and the Cootie tree is shown in blue on the right. From now on, we’ll refer

to one of the trees as the host tree (the Groody tree, in our example) and the other the

parasite tree (the Cootie tree in this case).

The nodes in a tree represent hypothesized ancestral species. The end nodes, or

“tips,” of each tree represent the currently living, or extant, species. In Figure 12.1,

we’ve given these names Groody 1 through 4 and Cootie 1 through 4. All the other

nodes in the trees represent hypothesized species, named X , Y , Z in the Groody tree

and x , y, z in the Cootie tree. More precisely, those nodes represent speciation events

when the hypothesized ancestral species divided into two new species. Therefore, an

edge in the tree can be thought of as the lifetime of the species with the node at the end

2 The construction of phylogenetic trees is itself a fascinating and important field in computational biology, but
here we’ll assume that the phylogenetic trees have already been constructed using one of several known
techniques.
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Figure 12.1 A tanglegram for Groodies and Cooties.

of that edge indicating the speciation event. Finally, the associations between the tips

of the Groody and Cootie trees are indicated by dotted lines. A figure like this showing

two phylogenetic trees and the associations between their tips is called a tanglegram.

You might expect that coevolution should imply that the Groody and Cootie trees

are exactly identical. However, such perfect congruence almost never happens even for

species that have coevolved. Figure 12.2(a) and (b) show two possible ways in which

the species might have coevolved. In each case, the Cootie tree in blue is superimposed

on the Groody tree in black. Each of these is called a reconstruction since it attempts

to reconstruct the histories of the two species.

In the reconstruction in Figure 12.2(a), we see that Cootie speciation event z occurs

at the same time as Groody event Z . This is called a cospeciation event and corresponds

to two lineages speciating contemporaneously. For example, consider a species of louse

living on a species of gopher. Imagine that the gopher species becomes geographically

distributed with one population living in a warmer climate and another in a colder

climate. Eventually, the gopher species splits into two new species, one with short hair

and one with thick long hair adapted for the colder climate. The parasitic louse species

may also split to specialize to the two new species of gophers – one new louse species

may adapt to the short-haired gophers and the other to the thick long-haired gophers.

In general, if two species coevolved, we would expect to see a significant number of

cospeciation events between their two phylogenetic trees.

Notice that in Figure 12.2(a), events x and y in the Cootie tree occurred in the

“prehistory” of the Groody species, that is, before the first inferred Groody speciation

event. Speciation events in the Cootie tree that are not contemporaneous with speciation

events in the host tree are called duplications. Duplications suggest that the Cootie

speciation was independent of the Groody speciation, which does not contribute to
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Figure 12.2 Two possible reconstructions of the Cootie tree on the Groody tree.

evidence of coevolution of the two species. Finally, the edge from y to Cootie 1 passes

through X and Y as does the edge from x to z. These are called loss events. Loss events

may be due to a failure of the Cootie lineage to speciate, or there may have been a

speciation but one of the lineages became extinct.

The reconstruction in Figure 12.2(b) suggests another possible way in which the

two species may have coevolved with two cospeciation events (x maps to X and z

maps to Z ), a loss event at Y , and a duplication event where y occurs independently

of a speciation event in the Groody tree. Another interesting thing happens here: one

of the two descendant lineages from y switches to a different part of the Groody tree.
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This is called a host switch, or horizontal transfer event; such events are thought to

be quite common in evolution. For example, it is known that one strain of HIV host

switched from chimpanzees to humans sometime around the end of the nineteenth

century [7].

There are many other possible reconstructions of these two phylogenetic trees and

biologists would like to know which reconstructions, if any, are most plausible under

the assumption that the two species coevolved. One approach is to estimate the relative

likelihood of each of the four types of events (cospeciation, duplication, host switch,

and loss) assuming coevolution has occurred and assign each such event a numerical

“cost” so that likely events have low cost and unlikely ones have a higher cost. For

example, cospeciation is a very likely event under the assumption that our two species

coevolved, so the cost of this event might be 0 whereas duplication is a much less

likely event and would therefore have some positive cost.

Now our objective becomes that of finding a reconstruction of minimum total cost

under the given cost scheme. This is called the cophylogeny reconstruction problem. If

there exists a reconstruction of very low cost, this gives strong evidence of coevolution.

For example, imagine that cospeciation is assigned a cost of 0 and each duplication,

host switch, and loss is assigned cost 1. Then, in the reconstruction in Figure 12.2(a),

the total cost is 5 (2 duplications plus 3 losses), whereas in the reconstruction in

Figure 12.2(b) the total cost is 3 (1 duplication, 1 loss, and 1 host switch). You might

be wondering if there is a better reconstruction for the Groody and Cootie trees. The

answer is yes, there is a reconstruction of cost 2 and you might want to pause here to

find it. (Note that event x in the Cootie tree could be associated with something after X

in the Groody tree. Moreover, the edge leading into x is not considered to be involved

in loss events because we have no putative ancestor for x .)

Imagine that we enumerated every possible reconstruction of the Groody and Cootie

trees and, for each one, we computed its total cost. We then selected the reconstruction

of minimum total cost. In our example, that cost is 2. How do we know whether that

cost of 2 suggests coevolution? Certainly, if the cost had been 0, we’d probably feel

pretty confident that there was coevolution here because that would mean that the two

trees were identical. However, is a cost of 2 suggestive of that as well?

One way to find out is to use a basic idea in statistical hypothesis testing. Specifically,

we can formulate the null hypothesis that the two phylogenies and the associations of

their tips were random. Under this hypothesis, we’d like to measure the probability

that there was a reconstruction of cost 2 or less. We can do so by writing a computer

program that generates random pairs of trees and associations between their tips.3

3 There is some controversy on the issue of what should be randomized in such tests. Generally, the host tree is
not modified but the parasite tree is randomized. Another school of thought is that neither tree should be
changed but only the associations between the tips should be randomized.
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Next, we find the reconstruction of least cost and record that value. We repeat this

computational experiment some large number of times, say 100 times. Imagine that

we did this and discovered that for 96% of these random pairs, the cost of a minimum

reconstruction was 3 or higher and in only 4% were the minimum costs 2 or less. In

this case, we would say that the p-value is 0.04 because the probability of doing at

least as well as 2, assuming that the trees were just random, is 0.04. If the p-value is

low (typically less than or equal to 0.05), then we can reject the null hypothesis that

the pairs of trees were simply random.

3 Finding minimum cost reconstructions

Our statistical hypothesis testing depends on our ability to solve the cophylogeny

reconstruction problem. Moreover, once biologists are confident that a pair of species

coevolved, they would like to see what minimum cost reconstructions look like to get

a sense of some plausible ways in which the species coevolved.

Unfortunately, there are far too many different possible reconstructions for a pair of

phylogenetic trees for us to enumerate them all. The number of possible reconstructions

for two trees, each with n tips, can be shown to be an exponential function of n.

Just to get a sense of how bad that is, imagine that there were “only” 2n possible

reconstructions for a pair of host and parasite trees with n tips each. (The actual

number of reconstructions can be significantly larger than this!) If we have a pair of

trees with 100 tips each (small relative to some of the trees that biologists would like

to evaluate), we have 2100 reconstructions to evaluate. Even if we had a supercomputer

capable of examining a billion reconstructions per second, it would take over 40 trillion

years to examine them all! Considering that the sun will burn out in about nine billion

years, this is very very bad news.

“Let’s just wait a few years for faster computers; they should be able to do the job!”

you might be thinking to yourself. Let’s explore that for a moment. Under the very

optimistic assumption that computers get twice as fast every year, waiting 20 years

would result in computers that are about one million times faster than they are now.

With such a fast computer we could solve the problem for trees with 100 tips in a

mere 40 million years! In the off chance that this seems like a significant improvement,

consider that if we increased the number of tips in the trees from 100 to 120, we’d

be back to taking 40 trillion years to solve the problem, even with our super-fast

futuristic computer. Considering that biologists have developed cophylogeny data sets

in which the trees have over 200 tips, it appears that we’re in serious trouble if we try to

solve the problem this way. The moral of this story is that computational methods that
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consider an exponential number of possibilities are useless for even relatively small

phylogenetic trees.

For some computational problems, there are clever ways of finding the desired opti-

mal solution without brute-force examination of every possible option. For example,

you’ve probably used a program like Mapquest or Google Maps and asked for driving

directions from one location to another. Those programs can find the shortest path

between two locations without actually looking at every one of the large number of

different paths. Computer scientists have found very clever algorithms that are abso-

lutely guaranteed to find you a shortest path and the computation time is lightning

fast.

It would be nice if this was possible for the cophylogeny reconstruction problem.

Unfortunately, this appears to be very unlikely. The cophylogeny reconstruction prob-

lem was recently shown to be NP-hard, which essentially means that a fast algorithm

for solving the cophylogeny reconstruction problem probably doesn’t exist [8].

So what is to be done about the cophylogeny reconstruction problem? If the NP-

hardness of the problem meant that there was absolutely no hope, then evolutionary

biologists would be very disappointed and this chapter would be over. Fortunately,

computational biologists have developed several strategies for solving the cophylogeny

problem reasonably well. One approach is to try to use clever computational techniques

to avoid examining certain reconstructions that can’t be optimal. Professor Michael

Charleston, at the University of Sydney in Australia, has developed a technique called

jungles [9] that does exactly this. This approach still takes exponential time in many

cases so it can only be used with relatively small trees. The technique has been

implemented in a software tool called TreeMap [10].

Another approach is to use heuristics. A heuristic is a computational method that

doesn’t guarantee an optimal solution but foregoes optimality for efficiency. For exam-

ple, Professors Daniel Merkle and Martin Middendorf at the University of Leipzig in

Germany developed a very fast heuristic [11] used in a package called Tarzan [12].

(First there were jungles and then there was Tarzan.) Tarzan is known to find solutions

that are not necessarily optimal and sometimes even finds solutions that don’t quite

make sense biologically (e.g. reconstructions that are impossible because they require

a speciation event x to occur before another speciation event y but also for y to occur

before x , creating an irreconcilable inconsistency). Nonetheless, Tarzan often finds

very good solutions and can handle very large phylogenetic trees.

We have recently developed a different kind of heuristic for cophylogeny recon-

struction that uses a paradigm, called genetic algorithms, that computer science has

borrowed from biology. The irony here is that we are trying to use computational meth-

ods to solve a biological problem but the computational method was one that computer

scientists learned from biology! Unlike jungles, but like Tarzan, our approach does not

guarantee optimal solutions. However, our approach is guaranteed to always produce
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Figure 12.3 Cities and flight costs.

good and biologically reasonable solutions in a reasonable amount of time. Continuing

the jungles and Tarzan theme, our software is called Jane. In section 5, we explain

how Jane works. Then, you’ll have a chance to try it out for the fig/wasp, gopher/louse,

and finch/indigobird relationships. In the meantime, you can download Jane from

http://www.cs.hmc.edu/∼hadas/jane.

4 Genetic algorithms

In this section we’ll examine genetic algorithms. In the next, we’ll see how Jane uses

genetic algorithms to solve the cophylogeny problem. Finally, we’ll use Jane to explore

some real data in coevolution.

To explain the concept of a genetic algorithm – the key idea behind the Jane

software – we now take a short aside to discuss a famous computational problem

called the Traveling Salesperson Problem. The problem goes like this. Imagine that

you are a salesperson who needs to travel to a set of cities to show your products to

potential customers. The good news is that there is a direct flight between every pair

of cities and, for each pair, you are given the cost of flying between those two cities.

Your objective is to start in your home city, visit each city exactly once, and return

back home. For example, consider the set of cities and flights shown in Figure 12.3

and imagine that your start city is Aville.

A tempting approach to solving this problem is to use an approach like this: starting

at our home city, Aville, fly on the cheapest flight. That’s the flight of cost 1 to Beesburg.
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From Beesburg, we could fly on the least expensive flight to a city that we have not

yet visited, in this case Ceefield. From Ceefield we would then fly on the cheapest

flight to a city that we have not yet visited. (Remember, the problem stipulates that you

only fly to a city once, presumably because you’re busy and you don’t want to fly to

any city more than once – even if it might be cheaper to do so.) So now, we fly from

Ceefield to Deesdale and from there to Eetown. Uh oh! Now, the constraint that we

don’t fly to a city twice means that we are forced to fly from Eetown to Aville at a

cost of 42. The total cost of this “tour” of the cities is 1 + 1 + 1 + 1 + 42 = 46. This

approach is called a “greedy algorithm” because at each step it tries to do what looks

best at the moment, without considering the long-term implications of that decision.

This greedy algorithm didn’t do so well here. For example, a much better solution that

goes from Aville to Beesburg to Deesdale to Eetown to Ceefield to Aville has a total

cost of 1 + 2 + 1 + 2 + 3 = 9. In general, greedy algorithms are fast, but often fail to

find optimal or even particularly good solutions.

It turns out that finding the optimal tour for the Traveling Salesperson Problem is

very difficult. Of course, we could simply enumerate every one of the possible different

tours, evaluate the cost of each one, and then find the one of least cost. However, there

are a huge number (exponential or worse!) of different tours and this approach is

not viable for even a moderate number of cities. Like the cophylogeny reconstruction

problem, the problem is in the category of NP-hard problems – problems for which

there is strong evidence that no fast algorithms exist. So, we are in the same predicament

for the Traveling Salesperson Problem as for cophylogeny reconstruction.

Now for the clever idea that computer scientists borrowed from biology. Let’s call

the cities in Figure 12.3 by their first letters: A, B, C , D, and E . We can represent

a tour by sequence of those letters in some order, beginning with A and with each

letter appearing exactly once. For example, the tour Aville to Beesburg to Deesdale to

Eetown to Ceefield and back to Aville would be represented as the sequence ABDEC .

Notice that we don’t include the A at the end because it is implied that we will return

to A at the end.

Now, let’s imagine a collection of some number of orderings such as ABDEC ,

ADBC E , AEC DB, and AE BDC . Let’s think of each such ordering as an “organ-

ism” and the collection of these orderings as a “population.” Pursuing this biological

metaphor further, we can evaluate the “fitness” of each organism/ordering by simply

computing the cost of flying between the cities in that given order.

Now let’s push this idea one step further. We start with a population of organisms/

orderings. We evaluate the fitness of each organism/ordering. Now, some fraction of

the most fit organisms “mate,” resulting in new “child” orderings where each child

has some attributes from each of its “parents.” We now construct a new population

of such children for the next generation. Hopefully, the next generation will be more
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fit – that is, it will, on average, have less expensive tours. We repeat this process for

some number of generations, keeping track of the most fit organism (least cost tour)

that we have found and report this tour at the end.

“That’s a cute idea,” we hear you say, “but what’s all this about mating traveling

salesperson orderings?” That’s a good question – we’re glad you asked! There are many

possible ways we could define the process by which two parent orderings give rise to

a child ordering. For the sake of example, we’ll describe a very simple (and not very

sophisticated) method; better methods have been proposed and used in practice.

Imagine that we select two parent orderings from our current population to reproduce

(we assume that any two orderings can mate): ABDEC and AC DE B. We choose some

point at which to split the first parent’s sequence in two, for example as ABD|EC . The

offspring ordering receives ABD from this parent. The remaining two cities to visit

are E and C . In order to get some of the second parent’s “genome” in this offspring,

we put E and C in the order in which they appear in the second parent. In our example,

the second parent is AC DE B and C appears before E , so the offspring is ABDC E .

Let’s do one more example. We could have also chosen AC DE B as the parent to

split, and split it at AC |DE B, for example. Now we take the AC from this parent. In

the other parent, ABDEC , the remaining cities DE B appear in the order BDE , so

the offspring would be AC BDE .

In summary, a genetic algorithm is a computational technique that is effectively

a simulation of evolution with natural selection. The technique allows us to find

good solutions to hard computational problems by imagining candidate solutions to

be metaphorical organisms and collections of such organisms to be populations. The

population will generally not include every possible “organism” because there are

usually far too many! Instead, the population comprises a relatively small sample of

organisms and this population evolves over time until we (hopefully!) obtain very fit

organisms (that is, very good solutions) to our problem.

Just as evolution makes no promises that it results in optimally fit organisms, this

technique cannot guarantee that the solutions that it finds will be optimal. However,

carefully crafted genetic algorithms have been shown to find very good solutions to

some very hard problems. Now, let’s see how these ideas are used in Jane.

5 How Jane works

Earlier, we noted that the cophylogeny reconstruction problem is computationally very

hard; the only known approaches for solving this problem would take nearly an eternity.

On the other hand, here’s some good news: if we happen to know the order in which
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Figure 12.4 (a) A host tree and three different possible orderings of the speciation events
shown in (b), (c), and (d).

speciation events occurred in the host phylogeny, the problem turns out to be solvable

very quickly!

What do we mean by the order of the speciation events? Consider the host phylogeny

shown in Figure 12.4(a). Obviously, speciation event A occurred before speciation

events B and C . Similarly, speciation event B occurred before speciation events D and

E . However, which speciation event occurred first: B or C? Similarly, did D occur

before E , or vice versa? There are many possible orderings for these events and three

of them are shown in Figure 12.4(b), (c), and (d). Recall that we assume that all of the

tips of the tree occur at the same time – that is, at current time.
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Surprisingly, if we happen to know the ordering of the speciation events in the host

tree, even if we know nothing about the ordering of the events in the parasite tree,

then we can find a least-cost solution in next-to-no-time using a clever computational

technique called dynamic programming [8]. While we won’t go into that technique here,

it is one of the mostly widely used methods in computational biology. For example,

sequence alignment, RNA folding, and various other computational biology problems

can be solved using this technique. In the case of cophylogeny reconstruction, we can

solve the problem in about one second (on a typical laptop computer) when the host

and parasite trees have 100 tips each. That’s fast!

“Wait a second!” we hear you exclaim. “Why does the ordering of the speciation

events in the host tree matter at all?” Take a look again at Figures 12.4(c) and (d). In

these figures let (A, C) denote the edge from node A to node C and let (B, E) denote

the edge from node B to node E . Notice that in the ordering shown in (c), speciation

event C occurs before speciation event B. Thus, a parasite that duplicates on edge

(A, C) cannot host switch to edge (B, E) because (A, C) ends before (B, E) begins.

On the other hand, in the ordering shown in (d), such a switch is possible because

speciation event c occurs after speciation event B so edges (A, C) and (B, E) overlap

in time. It might be that the best solution (the one that minimizes the total cost of the

cospeciation, duplication, host switch, and loss events) requires a switch from (A, C)

to (B, E), in which case the ordering in (c) might not be as “good” as the ordering

in (d).

There’s just one problem. How do we know the order in which the speciation events

occurred in the host tree? If we’re very lucky, we might have this information from

the fossil record, but generally we will have little or no reliable information on the

orderings of these events. Perhaps we could just try out all possible orderings of the host

tree events and see which one permits us to find the best reconstruction of the parasite

tree on the host tree? Unfortunately, there are way too many different orderings of the

host (an exponential number, to be specific!), so that’s totally impractical.

This is essentially the same problem that we had in the Traveling Salesperson

Problem; there were too many possible orderings of the cities to explore them all. So,

we used a genetic algorithm that kept a population that was a relatively small sample

of the totality of all possible orderings and we artificially “evolved” better solutions.

The Jane software package does exactly this for the cophylogeny reconstruction

problem. It starts with a population comprising some relatively small population of

random orderings of the speciation events in the host tree as illustrated in Figure 12.5(a).

For each such ordering of events in the host tree, we use our very fast dynamic

programming algorithm to find the best solution for reconstructing the parasite tree on

the host tree with this particular ordering of events. The cost of the best solution can be

thought of as the fitness for that ordering. Figure 12.5(b) shows the orderings scored
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(a) The genetic algorithm maintains a
population of “organisms,” each of which is
a different ordering of the events in the host
tree.

(c) Two orderings are chosen at random,
but biased in favor of orderings with lower
cost (better fitness). These orderings are
then “mated” to construct a new offspring
ordering that maintains some properties of
its parent orderings. This offspring ordering
is placed into the population for the next
generation.

6 5 7

9 8 8

7 9 10

6 5

(b) A very fast dynamic programming
algorithm is used to find the best
reconstruction of the parasite tree onto
each of the orderings of the host tree. The
cost of that reconstruction is used as the
fitness of that ordering. Example fitness
scores are shown in the upper left corner
of each ordering.

(d)  The parents are placed back into their
mating population and the mating process is
repeated until a new population of orderings
of the desired size is constructed. We 
now go back to step (a) using this new
generation as the mating population. 

Figure 12.5 The steps of the genetic algorithm used by Jane.

by their fitness. Keep in mind that in this context, a lower-cost solution is more fit than

a higher-cost solution.

Next, we repeatedly choose pairs of orderings to “mate.” While a pair of orderings is

chosen at random, our random choice is biased to prefer more fit (lower-cost) orderings
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to less fit (higher-cost) ones. That is, we tend to prefer orderings of the speciation events

in the host tree that permit us to find better solutions. We mate that pair of orderings

in some way, resulting in a new ordering that preserves some attributes from each of

its two parent orderings.4 The offspring is a new ordering of the host tree events that

has some attributes from each of its two parent orderings. Our hope is that this new

ordering of the speciation events in the host tree might be one for which there exists

an even better solution. This is illustrated in Figure 12.5(c).

We repeat this process of constructing new offspring orderings until we’ve built

a population of new orderings of some desired size. This is our next generation as

illustrated in Figure 12.5(d). We now start all over again with this new population

serving as the mating population. This process is iterated for a user-specified number

of generations. At the end, we report the best solutions that were found during this

evolutionary process.

6 See Jane run

Now that we have an understanding of the computational challenge posed by the

cophylogeny reconstruction problem, and the approach taken by Jane, let’s try using

Jane on some real cophylogeny data for figs and wasps and for gophers and lice.

If you haven’t done so already, download Jane from the website http://www.cs.hmc.

edu/∼hadas/jane. After you download it you can simply click on the the icon for that

file and Jane will start up on your computer. From the Jane page, there is also a link that

contains several example trees for you to download. One file is for figs and wasps, one

is for pocket gophers and chewing lice, and one is for finches and indigobirds. You may

also wish to read the Jane tutorial on the website, but the following is a self-contained

demonstration of Jane in action.

Now click on Jane to start the program. You’ll see the Jane window shown in

Figure 12.6. In the “File” menu at the top of the Jane window, select “Open Trees”

and find the Ficus-Ceratosolen.tree file that you downloaded from the Jane site. These

are trees for figs and wasps that pollinate them. When the file loads, you’ll see that

the Jane window reports that the trees have 16 tips each. Notice that there are sliders

in the Jane window that let you choose the “Number of Generations” (the number of

generations of the genetic algorithm) and the “Population Size” (the number of tree

orderings in each population maintained by the genetic algorithm). The defaults for

both of these values are 30, which is fine for now. Click “Go” to start Jane running.

4 We won’t go into the details of the mating of orderings here, but if you’re interested, you can find a detailed
description online at [13].
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Problem Information Actions

Current File: none

Host Tips: N/A    Parasite Tips: N/A 

Number of Generations 30

30Population Size

# # Cospeciations # Duplications # Host Switches # Losses Cost

Estimated Time: N/A

Status: Idle

Solve Mode Stats Mode

Estimate Time

Go

Genetic Algorithm Parameters

Solutions

Figure 12.6 The Jane window.

Within a second or so, Jane will complete the genetic algorithm and will display a

list of solutions in the “Solutions” window. (Since there is some randomness employed

in the genetic algorithm, you won’t necessarily get exactly the same solutions that

are shown here, nor will you necessarily get the same solutions each time you run

Jane.) Jane presents you with a list of best solutions that it found along with their

costs. By default, Jane assumes that cospeciations have cost 0, duplications and host

switches have cost 1, and losses have cost 2. While these values have been used in

many studies, biologists often try to infer appropriate relative values of these costs from

other biological data. The values of these parameters can be changed in the “Settings”

menu in Jane.

Coming back to our example, you can see that these solutions had 9 cospeciations,

12 duplications, 6 host switches, and 1 loss for a total cost of 9 × 0 + 12 × 1 + 6 ×
1 + 1 × 2 = 20. These are valid solutions, but since Jane uses a heuristic, there is no

guarantee that they are optimal solutions.
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C. appendiculatus

C. blommersii
F. botrvoides

C. arabicus
F. svcomorus

C. capensis
F. sur

C. fusciceps
F. racemosa

C. nexilis
F. robusta

C. qrandii

C. corneri
F. botrvocarpa

C. bisulcatus
F. septica

C. hooqlandii
F. hispidioides

C. dentifer
F. bernavsii

C. armipes
F. itoana

C. ‘kaironkenis’
F. microdictva

C. ex F. subcuneata
F. subcuneata

C. medlerianus
F. ochrochlora

C. ‘riparianus’
F. adenosperma

F. nodosa

F varieqata

Figure 12.7 A sample solution found by Jane.

Now, click on a solution to see what it looks like. You will see a new window with a

solution that might look something like the one shown in Figure 12.7. The black tree is

the host tree and the blue tree is the parasite tree. The hollow dots indicate cospeciation

events while the solid red dots indicate duplication events. Some duplication events

are accompanied by host switches as can be seen by the edges with arrows on them.

Finally, loss events are indicated by dashed lines. To learn more about the meaning of

the colors of the nodes, please read the tutorial on the Jane website. (You might notice

that there appear to be only 6 duplications rather than 12. In this cost model, each

duplication actually counts as two duplications – one for each of the two child species

that result from the duplication event.) Try this out for the gopher louse.tree file that

you downloaded.
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Next, let’s take a look at the finch and indigobird data set in the file Vidua.tree. The

trees here are larger than the others that you’ve experimented with previously; the host

tree has 33 tips and the parasite tree has 21 tips (some host species have no parasites).

Open this file in Jane and, this time, choose the “Number of Generations” used in

the genetic algorithm to be small – let’s try 3 generations. Similarly, let’s use a small

population size in the genetic algorithm – let’s make it 4. Click on “Go” and Jane will

run its genetic algorithm for 3 generations with 4 orderings per generation. You’ll see

some solutions reported in the “Solutions” window – these are the best solutions that

resulted from our artificial evolution of solutions in this case. Note the cost of these

solutions.

As biologists, we know that natural selection works slowly and more effectively

in large populations. So, let’s now increase the “Number of Generations” to a larger

value – say 20 – and let’s increase the size of the population in each generation to

something larger as well, perhaps 100. Now, click “Go” again. The old solutions will

still be listed here, but below them will be the new solutions found from this longer and

larger evolutionary simulation. Take a look at the cost of these solutions! You should

see that much better solutions were found in this second run.

Now, you can perform a statistical experiment to get a sense of whether or not the

cost of the best solution found by Jane is suggestive of coevolution. More precisely,

you can test the null hypothesis that the best solution found for the observed data –

that is, the least-cost mapping of the given parasite tree onto the host tree given the

observed mapping between the tips of the parasite tree and the tips of the host tree – is

no better than we would find for random trees and tip mappings. If that’s true, then the

case for coevolution for these species is weak. If it’s false, we are likely to accept that

coevolution was at work here.

To try this out for yourself, click on the “Stats Mode” tab in the middle of the Jane

window. By clicking “Go,” Jane will find the best solution it can for the observed

data and compare it with the best solution it can find for 50 random samples, each of

which is the same pair of trees but with a completely random mapping between the

tips of the host and parasite trees. The histogram at the bottom right shows the costs

of the 50 samples: our original tip mapping is indicated in the histogram in red and

the 50 random mappings are indicated by blue bars. If the majority of the random

samples have higher cost than the original mapping, it is likely that the low cost for

the observed tip mapping is not due to randomness. In particular, if 5% or fewer of

the random solutions are better than the observed, this is considered strong evidence

against the null hypothesis. Notice that you can change the sample size from 50 to any

value that you like. Try it!

You can also test an alternative null hypothesis that the solution for the observed data

is no better than random when the parasite tree and the tip mapping are randomized.
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To do so, click on the “Random Parasite Tree” button in the “Statistical Parameters”

panel and then press “Go” again. Now, try these computational experiments all over

again with the other data sets. You will discover that, indeed, the case for coevolution

is very compelling in each case.

DISCUSSION

This chapter has explored aspects of the field of cophylogeny – the study of the
evolutionary associations of species. Since we can’t travel backwards in time to
study these relationships in vivo, we do the next best thing and study them in
silico – that is, using computational methods. We’ve explored one computational
approach for cophylogeny reconstruction and the Jane software that uses this
approach.

Using computational tools, biologists are developing a better understanding of
how parasites such as HIV and malaria have coevolved with their primate hosts
which may ultimately lead to new approaches to combatting these diseases.
Professor Michael Charleston, one of the leading researchers in the field of
cophylogeny writes: “The global melt-down of ecological diversity is leading to
greater chances of unrelated organisms interacting, leading in turn to greater
potential of new pathogens crossing the species barrier into the human
population. Understanding the way in which such cross species transmissions
occur is of fundamental importance and it is through phylogenetic tools such as
cophylogenetic maps which will shed the light we need.”[14]

In addition to this pragmatic need, cophylogeny allows us to explore some of
the beautiful and surprising ways that nature works, as Darwin himself imagined
over 150 years ago.

QUESTIONS

(1) The Jane website (http://www.cs.hmc.edu/∼hadas/jane) contains a number of sample host
and parasite trees, including several that were discussed in this chapter. If you haven’t
done so already, download the “Ficus and Ceratsolen” file (called Ficus-Ceratosolen.tree)
for the fig/wasp mutualism. Open this file in Jane and you will see in the upper-left corner
of the Jane panel that these trees both have 16 tips.
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(a) Use Jane to find solutions for this pair of trees. You may use the default settings of 30
generations and a population size of 30. Jane will present a number of different
solutions found. Click on a solution to view it. Then, click on another solution to view
it. Finally, click on a third solution. You will now have three solution windows open.
These solutions will differ in some places but will agree in others. Describe where these
solutions differ.

(b) Next, enter “Stats Mode” and click the “Go” button. Take a look at the histogram
produced. The dashed red line shows the cost of the best solution found for the
original data and the blue bars indicate the best solutions found for 50 random
samples. What do these results suggest?

(2) Using the Ficus–Ceratosolen data set, make a note of the number of cospecation,
duplication, host switch, and losses in the solutions found by Jane. (If you are still in “Stats
Mode,” you will need to go back to “Solve Mode” to do this.) Jane allows biologists to set
the relative costs of each of these four event types. This is done by clicking on the
“Settings” menu and selecting “Set Costs.” (You will be asked if you would like to clear
the solution table. Click “Yes”.) Now, change the cost of a loss (sorting) event from 2 to 1,
click “Go” to re-solve the problem, and note the number of each of the four event types
used in the best solutions found. Explain why the solutions to the first case differ from the
second case.

(3) Do a web search for “cophylogeny” and/or “host parasite” to find at least one more
example of a host-parasite system. Briefly describe this system and the results found by
the authors.
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CHAPTER THIRTEEN

Big cat phylogenies, consensus
trees, and computational
thinking

Seung-Jin Sul and Tiffani L. Williams

Phylogenetics seeks to deduce the pattern of relatedness between organisms by using a
phylogeny or evolutionary tree. For a given set of organisms or taxa, there may be many
evolutionary trees depicting how these organisms evolved from a common ancestor. As a
result, consensus trees are a popular approach for summarizing the shared evolutionary
relationships in a group of trees. We examine these consensus techniques by studying how the
pantherine lineage of cats (clouded leopard, jaguar, leopard, lion, snow leopard, and tiger)
evolved, which is hotly debated. While there are many phylogenetic resources that describe
consensus trees, there is very little information regarding the underlying computational
techniques (such as sorting numbers, hashing functions, and traversing trees) for building
them written for biologists. The pantherine cats provide us with a small, relevant example
for exploring these techniques. Our hope is that life scientists enjoy peeking under the
computational hood of consensus tree construction and share their positive experiences with
others in their community.
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Figure 13.1 Four phylogenies representing the evolutionary history of the pantherine lineage.
Trees T1, T2, T3, and T4 were published by Johnson et al. in 1996 [6], Johnson et al. in
2006 [7], Wei et al. in 2009 [8], and Davis et al. in 2010 [3], respectively. Each tree was
reconstructed using different biological data. For all trees, the clouded leopard is the most
distantly related taxon and serves as the outgroup to root each tree.

1 Introduction

For millennia, scholars have attempted to understand the diversity of life, scrutinizing

the behavioral and anatomical form of organisms (or taxa) in search of the links

between them. These links (or evolutionary relationships) among a set of organisms

form a phylogeny, which served as the only illustration for Charles Darwin’s landmark

publication The Origin of Species. Phylogenetic trees most commonly depict lines

of evolutionary descent and show historical relationships, not similarities [1]. That

is, evolutionary trees communicate the evolutionary relationships among elements,

such as genes or species, that connect a sample of taxa. Figure 13.1 shows several

phylogenies that hypothesize how the pantherine lineage of cats (clouded leopard,

jaguar, leopard, lion, snow leopard, and tiger) evolved. The evolution of these big

cats is hotly debated [2, 3]. Being one of the most threatened of all carnivore groups,

we must understand all that we can about these great cats. The true phylogeny for a

group of taxa such as the pantherine cats can only be known in rare circumstances (for

example, where the pattern of evolutionary branching is created in the laboratory and
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observed directly as it occurs [4]). Since fully resolved and uncontroversial phylogenies

are rare, the generation, testing, and updating of evolutionary hypotheses is an active

and highly debated area of research [5].

In this chapter, we examine how to summarize the different hypotheses reflected in

a group of phylogenetic trees into a single, evolutionary history (or consensus tree).

We use the phylogenies of the pantherine lineage of cats as the basis for understanding

evolutionary trees and constructing their consensus. The appealing feature of consensus

trees is that life scientists can study a single tree with the most robust branching patterns

of how the taxa evolved from a common ancestor. While there is some debate over the

use of consensus trees [9], they remain critical for phylogenetics.

Many references exist to describe the numerous types of consensus tree

approaches [9–11]. Unfortunately, little information is provided to help life scientists

understand the computational ideas behind the algorithms. The consensus tree problem

encompasses several fundamental computational concepts, such as sorting branching

patterns, hashing functions, and traversing trees. Computational thinking [12] is a new

way of solving problems that leverages fundamental concepts in computer science.

Furthermore, computational thinking is very relevant for life scientists. In a recent

report [13], the Committee on Frontiers at the Interface of Computing and Biology for

the National Research Council concluded that computing and biology have converged

and that “Twenty-first century biology will be an information science, and it will

use computing and information technology as a language and a medium in which to

manage the discrete, nonsymmetric, largely nonreducible, unique nature of biological

systems and observations.” We hope that by providing a window into the underlying

algorithms behind building consensus trees, life scientists will appreciate the compu-

tational ideas involved in solving biological problems and share their experiences with

their interdisciplinary colleagues.

2 Evolutionary trees and the big cats

The pantherine lineage diverged from the remainder of modern Felidae less than

11 million years ago. The pantherine cats consist of the five big cats of the genus

Panthera: P. leo (lion), P. tigris (tiger), P. onca (jaguar), P. pardus (leopard), and P.

uncia (snow leopard), as well as the closely related Neofelis species (clouded leopards),

which diverged from Panthera approximately six million years ago. These cats have

received a great deal of scientific and popular attention because of their charisma,

important ecological roles, and conservation status due to habitat destruction and over-

hunting. Dissimilar patterns of diversification, evolutionary history, and distribution
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Figure 13.2 Unrooted phylogenies of the Panthera genus based on the trees in Figure 13.1.

make these species useful for characterizing genetic processes. Furthermore, extensive

descriptive information is available on their natural histories, morphology, behavior,

reproduction, evolutionary history, and population genetic structure, which provides a

rich basis for interpreting genetic data.

Despite their highly threatened status, the evolutionary history of these cats has

been largely obscured. The difficulty in resolving their phylogenetic relationships is

a result of (i) a poor fossil record, (ii) recent and rapid radiation during the Pliocene,

(iii) individual speciation events occurring within less than one million years, and

(iv) probable introgression between lineages following their divergence [3]. Multiple

groups have attempted to reconstruct the phylogeny of these cats using morphological

as well as biochemical and molecular characters. However, there is great disparity

between these phylogenetic studies.

2.1 Evolutionary hypotheses for the pantherine lineage
Davis et al. [3] show 14 phylogenetic trees (including the tree that they reconstructed)

from different studies of these cats. Figure 13.1 shows 4 of the 14 pantherine trees in the

Davis et al. work. Trees T1, T2, and T4 produce the hypothesis that the Panthera genus is

composed of two main clades consisting of (i) snow leopard and tiger, and (ii) jaguar,

leopard, and lion. Furthermore, in trees T1 and T4, lion and leopard are sister taxa

with jaguar sister to these species. Tree T3 shows a completely different evolutionary

picture, in which snow leopard and lion are sister taxa. Based on numerous phylogenetic

studies, clouded leopard is assumed to be the most distantly related species and serves

as the outgroup taxon in order to root the phylogenetic tree. However, the relationships

among the five big cats of the Panthera genus are still under debate given the numerous

incongruent findings by scientists. Thus, unrooted trees are used to focus attention on

the big cats in the Panthera genus as shown in Figure 13.2.

The resulting consensus trees for the Panthera genus are shown in Figure 13.3.

While there are a variety of approaches for building consensus trees, we concentrate

on majority and strict consensus trees, which are the most commonly used approaches.

Majority consensus trees consist of those branching patterns that exist in a majority of

the trees. Strict consensus trees contain evolutionary relationships that appear in all of
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Figure 13.3 Majority and strict consensus trees of the Panthera genus of big cats based on
unrooted trees shown in Figure 13.2.

the trees. For example, one branching pattern that appears in the majority tree is the

relationship that shows snow leopard and tiger as sister taxa, which appears in three of

the four trees in Figure 13.2. Instead of looking at all four pantherine trees, one simply

examines the consensus trees to understand the evolutionary relationships among the

taxa.

Finally, we note that while we show topological conflict among phylogenetic studies

performed by different research groups, there can also be topological conflict within

the same phylogenetic study. Such conflicts are often resolved using consensus trees

as well.

2.2 Methodology for reconstructing pantherine
phylogenetic trees
Below, we summarize how the four trees shown in Figure 13.1 were reconstructed.

Although each of the studies below were conducted on the pantherine lineage of cats,

no one phylogenetic study was performed in exactly the same manner.

2.2.1 Tree T1: Johnson, Dratch, Martenson, and O’Brien
Tree T1 is based on RFLP (Restriction Fragment Length Polymorphisms) of complete

mitochondrial DNA (mtDNA) genomes using 28 restriction endonucleases [6]. John-

son, Dratch, Martenson, and O’Brien believed that mtDNA has several traits which

make it useful for phylogenetic analysis, including nearly complete maternal, clonal

inheritance, a general lack of recombination, and a relatively rapid rate of evolution,

and that RFLP analysis has the advantage of rapidly sampling the entire mitochon-

drial genome. In their study, estimated sizes of fragments were summed for general

concordance with domestic cat mitochondrial DNA, which has a length of 17 kb,

disregarding putative nuclear mitochondrial (numt) DNA fragments. Percentage inter-

species variation was estimated using FRAG NEW. Phylogenetic relationships among

individuals within each set of RFLP data were constructed from the distance data

by the minimum-evolution method estimated by the Neighbor Joining algorithm [14]
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implemented in PHYLIP [15], and from the character data using the Dollo parsimony

model implemented in PAUP* [16], followed by the bootstrapping option with 100

resampling. For comparison, trees were also reconstructed by maximum parsimony

using PAUP*.

2.2.2 Tree T2: Johnson, Eizirik, Pecon-Slattery, Murphy, Antunes,
Teeling, and O’Brien
Johnson et al. [7] found tree T2 using the largest molecular database to date, consisting

of X- and Y-linked DNA, autosomal DNA, and mitochondrial DNA sequences, which

consisted of 19 autosomal, 5 X, 4 Y, 6 mtDNA genes (23,920 bp) sampled across

37 living felid species plus 7 outgroup species representing each feliform carnivoran

family. They present a phylogenetic analysis for nuclear genes (nDNA). First, the eight

Felidae lineages are strongly supported by bootstrap analyses and Bayesian posterior

probabilities (BPP) for the nDNA data and most of the other separate gene partitions.

Second, the four species previously unassigned to any lineage have been placed, and the

hierarchy and timing of divergences among the eight lineages are clarified. Third, the

phylogenetic relationships among the non-felid species of hyenas, mongoose, civets,

and linsang corroborate previous inferences with strong support.

2.2.3 Tree T3: Wei, Wu, and Jiang
Tree T3 was found by Wei, Wu, and Jiang [8] based on 7 mtDNA genes (3,816 bp). They

constructed the tree based on the concatenated 7 mtDNA genes from 10 species with

the data set obtained from GenBank. Maximum likelihood using PAUP* and Bayesian

inference using MrBayes [17] were used for the reconstruction of the phylogenetic tree.

Their result indicated that snow leopard and tiger are sister taxa, which is incongruent

with previous findings.

2.2.4 Tree T4: Davis, Li, and Murphy
Most recently Davis, Li, and Murphy [3] published tree T4 using intronic sequences

contained within single-copy genes on the felid Y chromosome which was combined

with previously published data from Johnson et al. [7], and newly generated sequences

for four mitochondrial and four autosomal genes, highlighting areas of phylogenetic

incongruence. More specifically, they sequenced the 12S, CYTB, ND2, and ND4

gene segments using in-house DNAs with reagent and thermal cycler protocols. Their

47.6 kb combined data set was analyzed as a supermatrix with respect to individual par-

titions using maximum likelihood and Bayesian phylogenetic inference, in conjunction
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with Bayesian estimation of species trees (BEST) [18, 19] which accounts for heteroge-

neous gene histories. They emphasized that the Y chromosome has a very low level of

homoplasy in the form of convergent, parallel, or reversal substitutions and renders the

vast majority of substitutions phylogenetically informative. Their analysis fully sup-

ported the lion and leopard as sister taxa with the jaguar being sister to these species.

In Figure 13.1, Tree T1 by Johnson et al. and tree T4 by Davis et al. are identical trees

but reconstructed over different phylogenetic data.

2.3 Implications of consensus trees on the phylogeny
of the big cats
The majority consensus tree in Figure 13.3(a) shows that the four phylogenetic stud-

ies considered in this chapter agree that there are two distinct clades of the big cats.

Lions, leopards, and jaguars share a specific set of common characteristics that distin-

guish them from the second clade consisting of tiger and snow leopard. Moreover, this

majority consensus tree agrees with studies by Hemmer that examined morphological,

ethological, and physiological features [20]. The analysis of excretory chemical signals

by Bininda-Emonds et al. [21] also supports these two distinct clades. Davis et al. [3]

state that published molecular studies that failed to fully support this two clade distinc-

tion (lion–leopard–jaguar and tiger–snow leopard) probably relied heavily on mtDNA

sequences that had not been vetted as true cytoplasmic mitochondria (cymt) amplifica-

tions, suffered from species misidentification, or lacked sufficient phylogenetic signal.

The strict consensus tree in Figure 13.3(b) shows a star tree topology and gives us no

information regarding the evolution of the big cats. Even if 99.9% of the trees agree

on a clade, it would not appear in the strict consensus tree. Hence, majority trees are

preferred over their strict counterparts.

3 Consensus trees and bipartitions

As shown in Figure 13.2, there is incongruence among the trees across different

phylogenetic studies of the Panthera genus. While we are able to build a consensus

tree by hand for this small data set, much larger trees are also of interest to the

phylogenetic community. For example, Janecka et al. [22] analyzed 8,000 trees on

16 Euarchontoglires using MrBayes [17]. Hence, we need computational approaches

for building consensus trees – especially as the size of phylogenetic studies continues

to increase. The key to computational approaches for constructing majority and strict

consensus trees is identifying the shared evolutionary relationships (or bipartitions)

among a group of trees.
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Table 13.1 The bipartitions and their bitstring representations for the trees in
Figure 13.2. The bistrings are based on the taxa being in the following order: snow
leopard, tiger, jaguar, lion, and leopard, where snow leopard represents the first
bit, tiger the second bit, etc. TID and BID represent tree and bipartition indexes,
respectively.

TID BID Bipartition Bitstring

T1 B1 {snow leopard, tiger | jaguar, lion, leopard} 11000
B2 {snow leopard, tiger, jaguar | lion, leopard} 11100

T2 B3 {snow leopard, tiger | leopard, jaguar, lion} 11000
B4 {snow leopard, tiger, leopard | jaguar, lion} 11001

T3 B5 {snow leopard, lion | leopard, jaguar, tiger} 10010
B6 {snow leopard, lion, leopard | jaguar, tiger} 10011

T4 B7 {snow leopard, tiger | jaguar, leopard, lion} 11000
B8 {snow leopard, tiger, jaguar | lion, leopard} 11100

3.1 Phylogenetic trees and their bipartitions
Let T represent the set of trees of interest that we want to summarize into a single

consensus tree. For example, in Figure 13.2, T = {T1, T2, T3, T4}. The branches (or

bipartitions) of interest in the trees are denoted by vertical bars. In tree T1, there are

two bipartitions labeled B1 and B2. If we remove the bipartition B1, then the tree will

be split into two pieces. One part of the tree will have snow leopard and tiger. The

other side will contain jaguar, lion, and leopard. We will represent this bipartition B1

as {snow leopard, tiger | jaguar, lion, leopard}, where the vertical bar separates the taxa

from each other. Bipartition B2 represents the bipartitions {snow leopard, tiger, jaguar |
lion, leopard}. For any bipartition, how taxa are ordered on a particular side of the tree

has no impact on its meaning. That is, {tiger, snow leopard, jaguar | leopard, lion} is

another valid representation of bipartition B2.

Table 13.1 provides a listing of the bipartitions for each of the four trees. Each tree

has two bipartitions. Every evolutionary tree is uniquely and completely defined by its

set of bipartitions. That is, bipartitions B5 and B6 can only define the relationships in

tree T3. It is not possible for two different trees to have the same bipartitions. If two

trees share the same bipartitions, then they are equivalent. So, based on Table 13.1,

trees T1 and T4 are identical, although in Figure 13.2 they are drawn differently in

terms of the placement of the lion and leopard taxa names.

Finally, we note that the bipartitions in Figure 13.2 are non-trivial bipartitions. Trivial

bipartitions are bipartitions that every tree is guaranteed to have. These are branches

that connect to a taxon such as {snow leopard | tiger, jaguar, lion, leopard}, {jaguar |
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snow leopard, tiger, lion, leopard}, etc. Every tree must have n of these bipartitions,

where n is the number of taxa. In order to build a consensus tree, every input tree

must be over the same taxa set, which results in every tree having the same set of

trivial bipartitions. Thus, we do not consider trivial bipartitions in our explanation of

algorithms for building consensus trees.

3.2 Representing bipartitions as bitstrings
A convenient way to represent a bipartition is as a bitstring. Each taxon will be

represented by a bit, which means that the bitstring length will be equal to the number

of taxa in our trees. Taxa that are on the same side of the tree receive the same bit value

of either a “0” or a “1.” To use a bitstring notation, we need to establish the ordering of

the taxa. Any ordering will do as long as the taxa names are not duplicated. We choose

the following taxa ordering: snow leopard, tiger, jaguar, lion, and leopard. So, snow

leopard will represent the first leftmost bit, tiger the second leftmost bit, jaguar the third

leftmost bit, etc. In Figure 13.2, bipartition B2, which is {snow leopard, tiger, jaguar

| lion, leopard}, would be represented by the bitstring 11100. Here, taxa on the same

side of a bipartition as taxon snow leopard receive a “1.” For every bipartition shown

in Figure 13.2, Table 13.1 also shows its shorter bitstring representation. PAUP* [16],

a general-purpose software package for phylogenetics, uses the symbols “.” and “*”

(instead of “0” and “1”) to represent bipartitions when outputting them to the user.

4 Constructing consensus trees

The consensus tree algorithm consists of the following three steps: (i) collecting bipar-

titions from a set of trees, (ii) selecting consensus bipartitions, and (iii) constructing

the consensus tree. Steps 1 and 3 are the same regardless of whether a majority or strict

consensus tree is the desired result. For step 2, if a majority tree is desired, then the

consensus bipartitions are those that appear in over half of the trees. For strict trees,

consensus bipartitions appear in all of the trees. In the subsections that follow, our

examples will be based on building a majority consensus tree. The examples can be

adapted easily to accommodate building strict consensus trees.

4.1 Step 1: collecting bipartitions from a set of trees
Our first step in building a majority consensus tree is collecting all of the bipartitions

from the phylogenetic trees of interest. For our big cats example, it is not difficult to

list the bipartitions in the trees by hand. However, for larger trees, we would like a
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Figure 13.4 Using depth-first traversal to collect the bipartitions from tree T1.

computational procedure to make the task easier. Consider Figure 13.4. The left side

of the figure shows tree T1 and the two bitstrings that represents its bipartitions. The

right side of the figure shows how to obtain those bitstrings.

First, we root tree T1 arbitrarily, which in this example is at bipartition B2. A rooted

tree allows us to use a depth-first traversal of the tree to obtain the bipartitions system-

atically. Second, we initialize each taxa with a 5-bit bitstring to represent the trivial

bipartitions. Starting at node D, we visit each left-hand side node (D → B → A).

Upon reaching node A, we gather the bitstrings of its children (snow leopard and tiger

bitstrings) and OR them together. Computing the OR between the two child bipartitions

requires visiting each of the five columns of these two bitstrings. To compute the OR

operation, if one of the children’s bits in column j is a “1,” then a “1” bit is produced for

column j in the bitstring representation of the parent. The result of the OR operation

at node A produces a bitstring of 11000, which reflects that snow leopard and tiger are

on one side of the tree and jaguar, lion, and leopard are on the other side of the tree.

Moreover, bitstring 11000 is also identified as bipartition B1 in tree T1.

After visiting node A, we return to node B since we know node A’s bitstring. The

result of the OR operation on the bitstrings of node A and the jaguar bitstring results

in a bitstring of 11100 for node B. Next, we return to node D to get its bitstring,

but we do not yet know the bitstring of node C . Once the bitstring of node C is

known (which is 00011), then we can compute the bitstring for the root node D, which

is 11111. Given that this is a star bitstring, we do not collect it explicitly, but we

do take advantage of its presence in our consensus tree building routine described in

Section 4.3. The root node’s bitstring will always consist of 1s since there is no division

of the taxa on a particular side of the tree. Notice that the bipartition for node C is

the exact complement of the bitstring for node A. Both of these bitstrings represent

the bipartition {snow leopard, tiger | jaguar, lion, leopard}. As a result, both of these

bipartitions are not needed, and node C’s bitstring is thrown out since we assume that



258 Part IV Phylogeny

Table 13.2 Processing the bitstrings from Table 13.1. The first (leftmost) column puts
the bitstrings in order based on the trees they originated from. The first column also
shows the value of the conversion from a bitstring (binary number) to a decimal value.
The second (middle) column puts the bitstrings in sorted ascending order based on their
decimal value, and the final (rightmost) column removes the redundant bitstrings and
shows the frequency that each unique bitstring or bipartition appeared in the trees.

Unsorted Sorted Sorted and filtered

Bitstring Value Bitstring Value Bitstring Frequency

B1: 11000 24 B5: 10010 18 10010 1
B2: 11100 28 B6: 10011 19 10011 1
B3: 11000 24 B1: 11000 24 11000 3
B4: 11001 25 B3: 11000 24 11001 1
B5: 10010 18 B7: 11000 24 11100 2
B6: 10011 19 B4: 11001 25
B7: 11000 24 B2: 11100 28
B8: 11100 28 B8: 11100 28

any taxa on the same side of snow leopard will be represented by a “1” bit. Node C

assumes the opposite.

The above depth-first traversal procedure is applied to each tree to obtain all of the

bipartitions across the trees. For this example, there are eight total bipartitions.

4.2 Step 2: selecting consensus bipartitions
4.2.1 Our first selection algorithm: sorting bitstrings

Once we have collected all of the bipartitions, then we are in a good position to select

the majority bipartitions, which we will later use to build the majority consensus tree.

Table 13.2 shows the results of this stage of the algorithm in the leftmost column.

We use our shorthand bitstring notation to represent the bipartitions. Every bitstring

is a binary number that can be represented by a decimal value. The rightmost bit

has a decimal value of 20 or 1, the second rightmost bit has a value of 21 or 2, etc.

For example, the bitstring 11000 for bipartition B1 is 1 · 24 + 1 · 23 + 0 · 22 + 0 · 21 +
0 · 20 or a decimal value of 24.

Next, we sort the collected bipartitions according to their decimal representations.

The second column of Table 13.2 shows the result. Given the sorted bitstrings, it is

easier to find the frequencies of the bipartitions. First, we start a new empty list to store

unique bipartitions. Then, we scan our sorted list, starting at our first sorted bipartition.

We copy this bipartition to our list of unique bipartitions and set the frequency count
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of this bipartition to 1. We visit the next bipartition in the sorted list. If it is the

same bipartition that we just visited, then we increment its frequency counter in the

unique bipartition list by 1. If it is not the same, then we have found a new unique

bipartition, and copy it to the unique bipartition list, and we initialize its frequency

count to 1. We repeat the above process until all bipartitions in our sorted list have been

processed.

The final column of Table 13.2 shows the result of filtering the unique bipartitions

and the resulting frequency counts. There are four unique bipartitions out of the eight

processed. The only majority bipartition is 11000 (or {snow leopard, tiger | jaguar, lion,

leopard}), which occurs three times in the input trees. From our list, we can also see

that the bipartition {snow leopard, tiger, jaguar | lion, leopard} represented by bitstring

11100 appeared twice, which was not enough for it to be a majority bipartition. We’ll

discuss how to use the majority bitstrings to build a majority tree in Section 4.3.

4.2.2 Our second selection algorithm: using hash tables
Now that we have a technique for finding the majority bipartitions within a set of trees,

can we do better? Our first approach collected the bipartitions from each of the trees,

sorted them, and ended with a filtering process to collect the unique bipartitions and

their frequency. In Table 13.1, the first column is the input to constructing a majority

consensus tree. The final column is the desired output in terms of producing a frequency

table of the unique bipartitions. Is it possible to get rid of the sorting step (the second

column) so that we can perform the computation faster?

In our second attempt at constructing majority consensus trees, we will use a tech-

nique known as hashing in order to get rid of the sorting step in our first selection

algorithm. A few algorithms [23, 24] have been developed that leverage the power of

hash functions to construct consensus trees. A hash function examines the input data

(hash keys) and produces an output hash value (or code). For us, the input data are the

list of bipartitions. The output data are the list of unique bipartitions. The advantage of

hashing is that each time we put our data through the hash function we know exactly

where to find it in the table. In our first selection algorithm, once we put the bitstrings

in the table, we had to perform a number of steps to organize the list later so that it

would be useful. With hash tables, our hashing function will keep our data organized

and quickly accessible.

Figure 13.5 shows an example of how to use hash tables to organize the bipartitions

of our big cat trees. We have a hash table with 13 slots labeled from 0 to 12. The arrows

show where each bitstring will be placed in the hash table. For example, the bitstring

for bipartition B1 will be placed in location 11 of the hash table. Bipartition B8 is

placed in location 2. It appears that the bipartitions are placed randomly in the hash
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Figure 13.5 An illustration depicting how the bipartitions from the four big cat phylogenies
are stored in a hash table. Each location in the hash table stores the bitstring representation of
a bipartition and its frequency among the four phylogenetic trees.

table. However, if placement in the hash table was purely random, then bipartitions

with the same bitstring would not be placed in the same location making it difficult to

update our frequency counts.

Each bitstring in Figure 13.5 is given to a hash function h defined as

h(b) = x mod m, (13.1)

where x is the decimal value of a bitstring b and m is the size of the hash table. In

our example, m is 13. The output of the function h provides the location in the hash

table to store the bipartition. The notation mod is shorthand for the modulo function.

Given two numbers, a (the dividend) and b (the divisor), a modulo b (abbreviated

as a mod b) is the remainder on division of a by b. For instance, 24 mod 13 would

evaluate to 11, while 28 mod 13 would evaluate to 2.

Each tree’s bipartition bitstrings are fed to a hashing function h and the output

determines the location where the bitstring will reside in the hash table. Each time

we insert a bitstring into the hash table, we determine whether the hash table location

is empty. If location h(b) is empty in the hash table, then we insert the bitstring and

initialize the frequency to 1. Otherwise, the bipartition bitstring is already there and

we simply update the frequency count by 1. The beauty of hashing resides in its ability

to find a bitstring with one retrieval operation. For example, if the bitstring is 11001,

h(11001) returns the hash table location 25 mod 13 or 12. Accessing location 12 of

the hash table directly gets the number of times the bitstring 11001 appeared among

the phylogenetic trees, which was once.
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While hash functions are elegant, there is one caveat to using them. There is a

possibility for two different bitstrings to reside in the same location in the hash table.

Such a condition is called a collision. Different bitstrings colliding to the same location

in the hash table is analogous to different people having the same credit card number.

Collisions not only slow down the algorithm, but could lead to erroneous results.

Ideally, we would like a perfect hash function which maps different inputs to different

outputs. Thus, much research has been conducted on how to construct good hashing

functions that attempt to simulate the behavior of a perfect hashing function.

Both Amenta et al. [23] and Sul et al. [24] employ more sophisticated hashing

techniques such as universal hashing functions to reduce the probability of different

bipartition bitstrings colliding in the hash table. In our examples, the decimal value of

the bitstring b4b3b2b1b0 is evaluated as

b4 · 24 + b3 · 23 + b2 · 22 + b1 · 21 + b0 · 20. (13.2)

For example, the bitstring 11001, where b4 = 1, b3 = 1, b2 = 0, b1 = 0, and b0 = 1

evaluates to 25. Under universal hashing functions, a random number, ri , is used instead

of 2i . As a result, the decimal value for a bitstring b4b3b2b1b0 becomes

b4 · r4 + b3 · r3 + b2 · r2 + b1 · r1 + b0 · r0. (13.3)

If r4 = 197, r3 = 17, r2 = 49, r1 = 997, and r0 = 5, then the bitstring 11001 evaluates

to 219.

Under universal hashing, a different set of random numbers is generated each time

the algorithm is used. Since the hashing function is being changed each time with

a different set of random numbers, the bitstrings will evaluate to different values.

As a result, the probability of two different bitstrings hashing (or more appropriately

colliding) at the same location will be very low. Imagine the chance of identity theft

if you received a new credit card number each time you made a purchase. While

inconvenient for credit card use, a new set of random numbers is quite convenient

when using universal hashing functions to organize bipartitions in a hash table in a

collision-free manner to construct consensus trees.

4.3 Step 3: constructing consensus trees from consensus
bipartitions
Initially, the majority consensus tree is a star tree of n taxa. In Figure 13.6, the left-

most tree is a star of five taxa since there are no bipartitions that separate the taxa
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Figure 13.6 Creating the majority consensus tree for the phylogenies shown in Figure 13.2.
There is only one majority bipartition {snow leopard, tiger | jaguar, leopard, lion}, or bitstring
11000.

on different sides of the tree. This star tree is represented by the bitstring 11111.

Bipartitions are added to refine the majority tree based on the number of 1s in its

bitstring representation. (The number of 0s could have been used as well.) The greater

the number of 1s in the bitstring representation, the greater the number of taxa that are

grouped together by this bipartition. For each of the majority bitstrings, we count the

number of 1s it contains. Bitstrings are then sorted in descending order, which means

that bipartitions that group the most taxa appear first. The bipartition that groups the

fewest taxa appears last in the sorted list of “1” bit counts. For each bipartition, a new

internal node in the consensus tree is created. Hence, the bipartition is scanned to put

the taxa into two groups: taxa with “0” bits compose one group and those with “1”

bits compose the other group. The taxa indicated by the “1” bits become children of

the new internal node. The above process repeats until all bipartitions in the sorted list

are added to the consensus tree.

In Figure 13.5, for example, bitstring 11000 appears in three trees among four input

trees which means it is a majority bipartition. Figure 13.6 shows the steps to construct
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Figure 13.7 Another illustration of creating a consensus tree. Here, we assume the majority
bipartitions are represented by the bitstrings 11100 and 11000.

a majority consensus tree using this bipartition. Starting from a star tree constructed

from the bitstring 11111, the majority bipartition 11000 determines that the taxa snow

leopard and tiger should be in the same group. Two internal nodes are inserted into

the starting star tree and the edges are updated. Since we have only one non-trivial

majority bipartition in our example, the construction of the majority tree is finished.

The resulting tree is converted into an unrooted tree, which is also the majority tree

shown in Figure 13.3. Rooting the tree is done in order to construct the consensus

tree, but it has no biological meaning. A separate process is performed in order to root

the tree for biological significance. For example, for the Panthera genus, the clouded

leopard is used as an outgroup taxon in order to root the tree. As previously mentioned,

this is a separate process from building consensus trees.

Suppose we have more than one majority bipartition. Figure 13.7 provides an exam-

ple of two majority bipartitions (11000 and 11100) making up the majority consensus

tree. Again, the bipartitions are sorted in descending order by the number of 1s.

Thus 11100 is first selected for processing which shows that the snow leopard, tiger,

and jaguar taxa reside in the same group. Next, 11000 is used to further resolve

the intermediate tree. In other words, the {snow leopard, tiger, jaguar} clade can be

resolved so that snow leopard and tiger exist in a same group. Finally, as described in

the previous example, the root tree is converted to an unrooted, majority consensus

tree.
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DISCUSSION

In this chapter, we explored several fundamental computational techniques
(sorting bitstrings, hashing functions, traversing trees) to build consensus trees
using phylogenies constructed from the pantherine lineage of cats. The Panthera
genus consists of the lion, tiger, jaguar, leopard, and snow leopard. There is much
dispute concerning the true phylogeny of these big cats. Given that there is no
universally accepted tree at this time, we used several published trees depicting
different hypotheses of evolution. Afterward, we used those trees to explore how
to build a consensus tree to summarize the various hypotheses of how these big
cats evolved.

While many phylogenetic resources give a definition of how to construct a
consensus tree, few resources actually give the reader insight into the
computational techniques for solving the problem. While a few published
algorithms describe how to build majority consensus trees [23, 24], they are not
suitable for someone not well versed in computer science. In this chapter, we give
scientists a taste of the beauty of computational ideas as they relate to
phylogenetics. Although constructing majority consensus trees is a simple
problem to explain, it has a wealth of hidden jewels that form the foundation of
many computational algorithms such as sorting numbers, hashing bitstrings, and
traversing trees.

Overall, we hope that our investigation of consensus tree computation inspires
life scientists to learn about other computational ideas in bioinformatics.
Furthermore, we encourage scientists well versed in computational ideas to seek
opportunities to share their experiences in a language that interdisciplinary
scientists can appreciate and share with their colleagues.

QUESTIONS

(1) Why are consensus trees important in studies of the pantherine lineage of cats?
(2) Why is it difficult to reconstruct the evolutionary history of the big cats?
(3) Why is computational thinking important for biologists?
(4) Besides constructing consensus trees, what other computational problems in biology can

take advantage of hashing functions?
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CHAPTER FOURTEEN

Phylogenetic estimation:
optimization problems,
heuristics, and performance
analysis

Tandy Warnow

Phylogenetic trees, also known as evolutionary trees, are fundamental to many problems in
biological and biomedical research, including protein structure and function estimation, drug
design, estimating the origins of mankind, etc. However, the estimation of a phylogeny is
enormously challenging from a computational standpoint, often involving months or more of
computer time in order to produce estimates of evolutionary histories. Even these month-long
analyses are not guaranteed to produce accurate estimates of evolution, for a variety of
reasons. In addition to the errors in phylogeny estimation produced by limited amounts of
data, there is the added – and critically important – fact that all the best phylogeny estimation
methods are based upon heuristics for optimization problems that are difficult to solve.
Consequently, large data sets are often “solved” only approximately. In this chapter, we
discuss the issues involved in phylogeny estimation, as well as the technical term from
computer science, “NP-hard.”
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1 Introduction

One of the most exciting research topics in biology is the investigation of how life

evolved on earth, ranging from questions concerned with very early evolution (e.g.

What did the earliest organisms look like? Are fungi or plants closer to each other than

either is to animals?) to more recent evolution (e.g. What is the relationship between

humans, chimps, and gorillas? Where did human life begin? How did human popu-

lations migrate around the world?). However, interest in evolutionary histories is not

restricted to species trees, as biologists are also interested in how protein families have

evolved, and the evolution of function within protein families. All these questions are

addressed through the use of computational methods that estimate evolutionary trees,

most typically on molecular sequence alignments, but also sometimes on morpholog-

ical characters. The good news is that in the last few decades, increasingly accurate

and powerful methods have been developed for these analyses, and genome sequenc-

ing projects have generated more and more sequence data; consequently, phylogenetic

analyses of very large data sets (with hundreds or thousands of sequences) are not

unusual. As a result, while there are still substantial debates about much of the Tree of

Life, many questions are now reasonably well resolved. For example, scientists now

believe that humans are more closely related to chimps than to gorillas, the human

species began in Africa, birds are derived from dinosaurs, and whales are more closely

related to hippopotamus than to other species.

All these phylogenetic analyses are the result of a combination of fieldwork, wet-

lab work, and computational methods. In this chapter we discuss the computational

problems and methods that are used for these computational analyses. In the course of

this chapter, we will consider questions such as: What does it mean for a method to

solve a computational problem? How can we determine if a method is able to solve its

problem? As we shall see, some computational problems have been formally shown

to be “hard” to solve (the formal term is “NP-hard”), and computational problems of

interest to biologists are often NP-hard. Furthermore, when a problem is NP-hard, the

ability to solve it correctly generally requires techniques that can be unacceptably inef-

ficient. Therefore, NP-hard problems will require computationally expensive methods

for exact solutions, and conversely, efficient methods are likely to give suboptimal

solutions in some cases.

This chapter will illustrate these issues through problems that arise in the context of

estimating evolutionary trees. As we will see, certain computational problems posed

in this context can be solved exactly by methods whose running times are bounded by

polynomials in the input size (i.e. a function like n3, where the input has size n). Whether

this is considered efficient or not will depend upon how big n can get and the degree of
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the polynomial, so that quadratic time is often acceptable, but running times that grow

like n4 or worse, despite being “polynomial,” are not considered all that “efficient.”

On the other hand, some problems seem not to admit any exact algorithms that are

guaranteed to run in polynomial time. For these problems, exact solutions may require

a technique such as exhaustive search, which will have exponential running times

(i.e. functions like 2n , where the input has size n) on some inputs. Since techniques

like exhaustive search are computationally intensive on many large data sets, the

most commonly used methods are not guaranteed to solve their problems exactly.

Understanding the difference between methods that have accuracy guarantees and

those that have no guarantees is important – without this understanding, interpretation

of a computational analysis for an NP-hard problem can be difficult. Therefore, in

particular, interpreting trees produced by the most popular methods of phylogenetic

analysis is difficult, since these are almost entirely attempts to solve NP-hard problems.

2 Computational problems

We begin by discussing some very simple computational problems which will help

illustrate concepts such as “algorithm,” “heuristic,” “polynomial time,” and “NP-hard.”

Imagine you have a kid brother, and you need to arrange a birthday party to which

all his friends will be invited. The problem is that some of the friends don’t get along

with each other, and if you invite kids who don’t get along, they’ll fight and that will

spoil the party. Fortunately, you know exactly which pairs of children don’t get along.

Since your brother wants all his friends to be invited, you propose having a few parties,

but dividing up the friends so that everyone who’s invited to a party likes everyone else

at the party. Your brother likes the plan, so that’s what you do.

Of course, since planning a party takes time and energy (plus money), you are

hoping to do this with as few parties as possible. You already know two of his friends

don’t get along, so you can’t do it with one party. Can you do it with two parties, you

wonder?

Suppose your brother’s friends are Sally, Alice, Henry, Tommy, and Jimmy, but Sally

and Alice don’t get along, Henry and Sally don’t get along, Henry and Tommy don’t

get along, and Alice and Jimmy don’t get along. Can you invite them to two parties?

Here you have the brilliant observation that you can figure this out using logic.

Suppose Sally is invited to the first party. Since you have to invite everyone, but Sally

doesn’t get along with Alice and Henry, it follows that Alice and Henry have to be

invited to the second party. And since Henry doesn’t get along with Tommy, Tommy

has to be in the first party. Similarly, since Alice and Jimmy don’t get along, Jimmy
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Figure 14.1 A matrix and a graphical representation of which people don’t get along with
each other. A refers to Alice, S refers to Sally, H refers to Henry, J refers to Jimmy, and T refers
to Tommy.

has to be in the first party. So, your solution is: Sally, Tommy, and Jimmy get invited to

the first party, and Henry and Alice are invited to the second party. This works, since

Sally, Tommy, and Jimmy all get along, and Henry and Alice get along. You tell your

brother, and he’s happy. The parties will be planned, and all is well.

Note that figuring this out was easy, and didn’t take very much time. How much

time did it take? One way of analyzing this is to count “operations,” where looking at

your information counts as one operation, assigning someone to a party counts as an

operation, etc. To be formal about this, you have to describe how you represent your

information. Suppose you store this information about which friends get along in a

square matrix, with a row and column for each of your brother’s friends. You put an

X in a square if the pair of kids don’t get along. Thus, for the instance we described

above, the matrix would be as in Figure 14.1.

Now, to solve this problem, you can put the first friend in one party, and then go

through the row for that person, putting everyone who’s got an X for that row in the

second party. After that, you go to someone you just put into the second party, and go

through his/her row, putting everyone who doesn’t get along with him/her in the first

party, and so forth.

It is clear that this algorithm works correctly – but what is the running time?

Every time you process a row of the matrix, you use as many operations as there are

people in the set (remember, every examination of your input information counts as

an operation). Also, you have to repeat this processing of rows as many times as there

are people (well, one less time). Suppose there are n people (friends of your brother,
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I mean!). Then this discussion shows that this algorithm uses roughly n2 time (there

are n2 entries in the matrix, after all). Since this is a rough estimate of the time, we

write this as O(n2) time, to hide the extras here and there. What O(n2) time means is

that the number of operations used by the algorithm is bounded from above by Cn2,

where C is some positive constant. This bound holds no matter what the value of n is

(that is, the constant C doesn’t depend upon n), and holds for any possible input with

n people. (By the way, this is pronounced “big-oh of n squared.”)

Running times like these are polynomial because they are bounded from above by

polynomials, and so we call this a polynomial time algorithm. If the degree of the

polynomial is small (say, at most two), this means the amount of time it takes to use

this algorithm won’t be very large, even for pretty large values for n. By contrast,

exponential functions grow quickly; their initial values may be small, but quite soon

the numbers are quite large. Large degree polynomials still grow quickly, but not

quite as quickly as functions that grow exponentially. What this means is that for any

polynomial and any exponential function, there will be some value for n after which

point the exponential function is larger than the polynomial. This is why the distinction

is important.

We return to the computational problem and our proposed method. In general, this

problem is formulated as a problem about a graph, where a graph has vertices (also

called nodes) and edges between certain pairs of vertices. Here, the people would each

be represented by a vertex in the graph, and if two people don’t get along, then the

vertices representing them would be connected by an edge, as we did for the graph

in Figure 14.1. In this framework, we are looking for a partition of the vertices into

two sets, A and B, so that no two vertices within A (or within B) are connected by

an edge. Such a partition may not exist, of course, but when it does, the partition

gives a solution to the problem of dividing the friends into two sets: the ones who go

to one party (corresponding to the vertices in A) and the ones who to go the other

party (corresponding to the vertices in B). The usual way of describing this problem

is that we would like to color the vertices of the graph with two colors, say red and

blue, so that no edge connects two red vertices or two blue vertices. If such a coloring

can be produced, then the vertices colored red would constitute the set A, and the

vertices colored blue would constitute the set B. A coloring with this property is called

a “2-coloring” of the vertices, and the problem we figured out how to solve is the

“2-colorability problem.”

2.1 The 2-colorability problem
Input: Graph G with vertex set V and edge set E .

Output: A coloring of the vertices in V with red and blue, so that no edge connects

vertices of the same color, if it exists, and otherwise the statement “Fail.”
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Figure 14.2 Graph representing the incompatibilities when you add Bobby to the
problem.

To summarize the discussion above, what you figured out is that we can solve the

2-coloring problem in O(n2) time, where V contains n vertices.

However, let’s return to the problem of coming up with parties for your brother.

You draw the graph representing the information you have, and the graph has five

vertices, one for each of your brother’s friends. You name these vertices S for Sally,

J for Jimmy, A for Alice, T for Tommy, and H for Henry. There is an edge between

vertices A and S, since Alice and Sally don’t get along. There is also an edge between

vertices H and S, between H and T, and between A and J. This graph is given in

Figure 14.1.

You then color the vertices of the graph with red and blue, and get Jimmy, Sally,

and Tommy colored red, and Alice and Henry colored blue. This coloring means that

Jimmy, Sally, and Tommy go to one party, and Alice and Henry go to the other. Thus,

you can invite all the friends with just two parties.

So, you are happy. You have figured out how to have everyone invited to a party, and

you can do it in two parties. All is well. And on top of that, you are proud of yourself

for coming up with a nice algorithm to solve the problem.

But your brother, being a bit of a difficult kid (as all kid brothers can be, I suspect),

interrupts you at dinner to say “I forgot I have to invite Bobby.” You groan. Why?

Because Bobby is kind of difficult himself, and doesn’t get along with many people.

Your brother insists, however, so you add Bobby. Bobby doesn’t get along with Sally

and Henry, but he does get along with the others. Can you still do it in two parties?

You redraw the graph by adding a vertex (B) for Bobby, and including edges between

B and S, and between B and H (Figure 14.2). But when you redo your algorithm,

you discover a problem. You try to 2-color this graph: B gets colored red, then S

must be colored blue, and so what can H be colored? The problem is that vertex H is

adjacent to both B and S, and so cannot be colored either blue or red. (Notice that this

analysis doesn’t depend upon what color you gave the first vertex; so if you start by

coloring B blue, you still end up with a problem.) In other words, there is no way to

have two parties with Bobby in the picture. You tell your brother, and he cries a bit,
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but then you come up with the plan: use three parties, and let Bobby be in the third

party.1

And now you are happy again, but only for a short time. Your brother remembers

he has to invite some other friends. Ten more friends, in fact. And now you have 16

people, and you’d like to figure out the minimum number of parties you need to invite

everyone. You know you can’t manage with only two parties (the first six people needed

three parties), but now you’d like to figure out if you can do it with only three. How

are you going to solve this?

Unfortunately, figuring out how to do it in three parties is by no means straightfor-

ward. You can start as before, putting Sally in the first party, but then you are stuck.

Sally doesn’t get along with Alice or Henry, but which parties should Alice and Henry

go to? The same party, or different ones? Any decision you make now may be wrong.

This is distinctly different from the situation you faced when you only had two parties

to deal with; there, all decisions were obviously correct. And so with 16 people to put

into three parties, it gets complicated. Very complicated. You are very frustrated. You

try a few different attempts, but don’t come up with a way of putting them all into three

parties ... and you are about to give up. But then, you realize that you may have missed

a solution, and you had better just try all the possible ways of doing this. So you try

to enumerate all the possible solutions, and you check them, one by one. Each one

you check takes only a minute to write down and check (you are very good at this!),

and so you are sure you can be done very quickly. The only problem is that there are

many possible solutions. That is, each person can be put in any one of three parties,

and so there are 316 = 43,046,721 possible ways of putting them into parties. And at

one minute per assignment, this is 717,445 hours, which is 29,893 days, or almost 82

years. Let’s see. You are 21 now, and that means that if you don’t sleep at all, you’ll be

103 when you are done. That will take too long (and your kid brother isn’t that patient).

This kind of method is called “exhaustive search,” because it is defined by a search

strategy that explicitly examines every possible solution in the search for an optimal

solution. Exhaustive search techniques are provably correct, but they are infeasible

for many inputs. (Even using computers, such techniques quickly hit their limits in

running time, so that analyses using exhaustive search can take years on small inputs,

and millennia on some only moderately large inputs.)

So you can’t do it this way.

How will you do this?

At this point, you say to your brother, “Sorry, kiddo, but I can’t figure this out. I

don’t know if we can do it in three parties. I think we can’t, but I am not sure. Do you

1 You can always move some people, such as Tommy and Alice, into the third party, if you are feeling sorry for
Bobby. That is, there may not be a unique solution to this problem!
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care very much if we do it with the smallest number of parties? Maybe we should try

something else, like not inviting everyone?”

Your brother is a bit concerned, but he’s willing to consider the new approach. He

asks you to try to invite as many people as you can, but just to one party. And you try

to figure that out. It seems like an easier problem.

Once again, you think about this as a graph problem. The same graph will work: the

people are the vertices, and edges mean they don’t get along. And since you want a

group of people who all get along, and you want that group to be as large as possible,

you are looking for what is called a “maximum independent set”: a subset of the

vertices in which no two vertices are connected by an edge, and such that the subset is

as big as possible.

2.2 Maximum independent set
Input: A graph G with vertex set V and edge set E .

Output: A subset V0 of the vertex set V so that V0 is an independent set (no two

vertices in V0 are connected by an edge) and has maximum size among all such

subsets.

How would you try to solve this problem?

You start hopefully, thinking since Sally gets along with lots of people the best

solution will probably include her (besides, you like Sally and you hope she’ll be at the

party so you can get to know her better). You take out the two people (Henry and Alice)

she doesn’t like, and you look at the rest. Now, if you include Tommy, you can’t include

the people Tommy doesn’t get along with, and unfortunately there are some people in

the group that Tommy doesn’t like. But this basic problem is true for everyone in the

set: no one is an obvious addition. So you just hope for the best, and add Tommy, and

throw out the ones he doesn’t like, and see what happens. Hoping for the best, you put

together a group of people where all the people get along. Unfortunately, you don’t

know if it’s the largest group. So you try again. This time, you begin with Sally, but

this time you don’t include Tommy ... and you get a slightly smaller group. So you try

again, including Tommy and Alice, but making some other decisions differently, and

each decision gives you a different group. You do this many times, and eventually get

tired. You see that you have a group of 8 people (out of 16, not so great, perhaps). You

ask your brother if this is okay.

He says: “Is this the best you could do?”

And honestly, you don’t know. Maybe a better solution could be found. You try

to figure out if you can find an optimal solution, and you wonder about using some

“exhaustive search” technique. You’d have to look at all possible subsets of people, and

then check each subset to see if everyone got along. How many subsets are there of n
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people? For each person, you can either include them in the subset or not. Thus, each

subset is defined by the sequence of n choices you make (include or don’t include),

one for each person. Since there are two possible choices, there are 2n possible subsets

of n people. For 16 people, there are 216 subsets, but one of these is the empty set (has

no one in it), and so you only have to look at 216 − 1 subsets. How big is that number?

Unfortunately, it’s big: 65,535. Not as big as the previous number, but still big enough.

And if each subset took one minute to process, it would take 1,092 hours, or 45 days.

Not nearly as bad as the previous problem, but still too long.

So you say to yourself, I can’t use an exhaustive search technique. Let me think about

doing this differently, where I don’t have a guarantee of getting an optimal solution,

but maybe it will work. I’ll find a set of people who get along, and then try to modify

it. I’ll look at someone not in the group, and see what happens if I add that person to

the group. If they don’t get along with some people in the group, I’ll throw out the

ones they don’t get along with. That will make the number of people in the group go

down, and maybe my set will then be smaller. But if I remove these people, I might be

able to add some others to the group who get along with everyone in the group, so it

might be better. And, in any event, it will make it possible to keep exploring possible

sets. Maybe I’ll do better this way.

And so you try this. And after a while, you find a set of nine people you can invite

(before you only had eight, so this is an improvement). But you don’t find a bigger set.

And you say to your brother – “Hey, we can invite nine of your friends. How’s that?”

He’s not happy and asks you “Can you do better”? You aren’t sure. You just aren’t sure.

How can you be sure? But you are tired of looking for a larger set, and you are pretty

fed up. By now, you aren’t sure you want to do this party for him at all. (As an aside,

many heuristics have been developed for this maximum independent set problem, for

example, [1].)

So he accepts the plan. You have a party for nine people, and you give up being his

social organizer for the future. You still love your kid brother, but you won’t be trying

to arrange his parties in the future!

3 NP-hardness, and lessons learned

You are not alone in having a very hard time with finding effective techniques for

solving these problems. These problems are really hard. So hard, in fact, that computer

scientists have studied them for decades, and some computer scientists believe that it

is not possible to solve these problems exactly and efficiently. I’ll explain what this

means.
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Remember how you came up with an algorithm to determine if you could manage to

invite everyone with two parties? That is, you showed how to solve the 2-colorability

problem for n vertices in O(n2) time. On the other hand, trying to figure out if you could

invite everyone with just three parties was hard, and you couldn’t find an algorithm that

solved that problem without resorting to exhaustive search. And your exhaustive search

technique used more than 3n operations, because there were 3n ways of assigning n

people to three parties. The difference in growth between these two functions – n2 and

3n – is dramatic (just look at the difference in value when n = 20, and when n = 100).

That is, n2 is polynomial in n, and 3n is exponential in n. Functions that are exponential

in their parameter grow much more quickly than functions that are polynomial in their

parameter. Therefore, while both functions may have reasonably small values for small

n, the exponential function will be much larger than the polynomial function at some

point, and then stay larger. And, worse, the running time of the algorithm, if it is

described by an exponential function, will be too large for all but pretty small values

of n.

The fact that the running time of the exact algorithm you developed for the “three-

party problem” (otherwise known as the “3-colorability problem”) is exponential is

not at all surprising, because this problem has been proven to be an “NP-hard” problem

(this is bad news!). Similarly, the maximum independent set problem is also NP-hard.

It was just your bad luck that you tried to solve two NP-hard problems!

NP-hardness has a technical definition [2], which we’ll not go into here. The main

consequence of saying that a problem is NP-hard, though, is that to date, no one

has ever been able to find an algorithm that can solve an NP-hard problem and that

runs in polynomial time. So, you were in very good company. Your inability to come

up with a technique to solve this problem correctly, and which runs in polynomial

time, is shared with many very famous and smart mathematicians and computer

scientists.

What does a computer scientist do when confronted with an NP-hard problem?

Often, they develop heuristics for these problems, by which we mean methods that

try to find good solutions that may not be exactly correct. In the context of the 3-

colorability problem, they might try to develop a method that is sometimes able to find

3-colorings, but may fail on occasion to find a 3-coloring even when the graph can be

3-colored. In the context of the maximum independent set problem, they might try to

find a heuristic to produce an independent set, and they’d hope that the set they produce

is the largest possible ... but on some inputs, it wouldn’t be the largest possible. If they

are lucky, the heuristic will be fast, but often it won’t be. In fact, if you think back to

your attempt to solve the maximum independent set problem, your approach tried to

modify the current independent set by adding and subtracting people. How long would

that heuristic take? The way you did it, you stopped when you got tired. But you could
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have put in some kind of stopping rule, such as stopping when the size of the biggest

independent set hasn’t increased in the last 100 sets you examined. How long would it

take before that stopping rule would apply? It’s not always easy to predict this, and in

general, running times of heuristics like these are hard to analyze.

So, when given an NP-hard problem, you have several options. One is to try to solve

it exactly, which typically will mean an approach that essentially involves a technique

that includes some exhaustive search method. These techniques are computationally

intensive, and limited to smallish data sets (even if you use a computer). Or, you

can design a heuristic which is not guaranteed to solve the problem correctly. These

heuristics have often produced very good results, sometimes even the correct result!,

on many inputs. The problem with heuristics is that you generally aren’t able to be sure

that your result is optimal, and you also can’t predict the running time.

How does this relate to phylogeny estimation?

4 Phylogeny estimation

The phrase “phylogeny estimation” refers to the action of producing a hypothesis of

the evolutionary tree (also called a “phylogeny” or “phylogenetic tree”) for a given set

of taxa. Thus, this is also called “phylogenetic tree estimation” or “evolutionary tree

construction.”

The relationship of the material in Section 3 to phylogeny estimation is that almost

every computational approach in phylogeny estimation is based upon an NP-hard

problem. That is, the computational methods that biologists typically use for estimating

evolutionary trees are methods that try to solve an optimization problem that is NP-

hard. Here, we will talk about one of these problems, maximum parsimony.

4.1 Maximum parsimony
Maximum parsimony is a very natural optimization problem for phylogeny estimation;

here we describe it in the context of estimating evolutionary trees (“phylogenies”) from

DNA sequences which all have the same length. However, you could use techniques

for maximum parsimony on some other kind of biological “character” data, such as

morphological features, RNA sequences, amino acid sequences, etc.

Suppose you have DNA sequences, all of the same length (and without any gaps),

such as the following.

The maximum parsimony problem asks you to find a tree, with leaves labeled by

the sequences in the input and with the internal nodes labeled by additional sequences,

all of the same length as the input sequences, which minimizes the total number of
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Z = CCATCGGGAAGG

T1

Y

X

Z

W

Z

X

Y

W

Z

Y

X

W

T2 T3

Figure 14.3 The three unrooted fully resolved trees on leaf set {W, X , Y, Z }.

substitutions on the tree. Thus, to compute the “cost” of the tree (given the sequences

at every node), you would count up the number of substitutions implied by each edge.

(To define the number of substitutions on an edge, you just compare the sequences

at the endpoints of the edge, and note the number of positions in which they have

different values. Thus, an edge with endpoints AACCT A and AACT T G would have

two substitutions, since the endpoints are different in positions 4 and 6.) The tree with

the minimum possible total would be returned by maximum parsimony.

4.1.1 Maximum parsimony
Input: Set S of strings (e.g. nucleotide sequences) of the same length k.

Output: Tree T with leaves identified with the different elements of S, and with

other strings of length k labeling the internal nodes, so that the total number of

substitutions is minimized.

When a tree is given for the set S, and the objective is to find the best sequence labels

for each node, we have the “Fixed-tree Maximum Parsimony problem.”

Let’s try to solve this problem on this input. We’ll do this by exhaustive search,

examining every possible tree, and trying to find the sequences at the internal nodes

that give the minimum total cost.

The first thing to notice about this problem is that how you root the tree doesn’t

matter, since the number of changes on each edge doesn’t depend upon the rooting.

Therefore, you only need to look at unrooted trees. The next thing to notice is that the

optimal score would be obtained by a tree that is fully resolved: each non-leaf vertex in

the tree has three edges coming out of it. Therefore, since there are only four sequences

in the input, you only need to look at three different trees (Figure 14.3).
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The first, T 1, has W and X siblings, and Y and Z siblings. We denote this tree by

(W X |Y Z ). The second tree, T 2, is denoted by (WY |X Z ), and the third tree, T 3, is

denoted by (W Z |XY ). Now, we look at how to label the internal nodes optimally for

each tree.

Consider the first tree, T 1. Let us call the internal nodes a1 and b1, with a1 adjacent

to W and X , and b1 adjacent to Y and Z . How shall we assign sequences to a1 and

b1? Note that minimizing the total number of substitutions on the tree is the same as

minimizing the total number of times each site changes on the tree. Hence, we calculate

the optimal sequences for the internal nodes by considering the sites (columns), one

by one. The first thing to notice is that whenever a site is constant on all the taxa (that

is, all the taxa have exactly the same nucleotide for that site), then we will label all

internal nodes with that state as well for that site. This is optimal, these sites won’t

change at all on the tree, and will therefore contribute 0 to the total tree cost. This

observation takes care of most of the sites in the tree.

Now, let’s consider the remaining sites. The first site has W and X having the

nucleotide A and Y and Z having nucleotide C. It’s very easy to see that this site must

change at least once on the tree, and that if we set a1’s state to A and b1’s state to C,

we will achieve that minimum.

The second through fourth sites are all constant, so we set a1 and b1 to be the

constant state for those sites. The fifth site is interesting: every leaf has a different

state. Therefore, the minimum possible number of times this site will change on this

tree is three, and we can achieve that by labeling a1 and b1 by the same state. We pick

A for the two internal nodes, but we could have achieved the same value using C, T, or

G – as long as they both have the same state.

The sixth site is also interesting: three leaves have the same state (A), and the fourth

leaf has a different state. We label a1 and b1 with A. Note that under this labeling, the

site changes once on the tree, and that this is the minimum possible (since two states

appear for this site).

The seventh and eighth sites are also constant. The ninth site is like the sixth – three

leaves have the same state (G), so we label the internal nodes with G.

The tenth through twelfth sites are constant.

Hence, we produce the sequences a1 = ACATAAGGGAGG and b1 =
CCATAAGGGAGG. Thus, a1 and b1 differ in exactly one position only, a1 and X

are identical as sequences, and b1 is different from every other sequence.

The six sequences labeling the nodes of this tree are given in Table 14.1.

To count how many changes there are on this tree, we can just look at each edge in

the tree, in turn. There are five edges: e1 = (W, a1), e2 = (X, a1), e3 = (a1, b1), e4 =
(b1, Y ), and e5 = (b1, Z ). The cost of the tree will be the sum of the edge costs, i.e.

cost(e1) + cost(e2) + cost(e3) + cost(e4) + cost(e5). Note that cost(e2) = 0 since X
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Table 14.1 Sequences
labeling the nodes of tree T1.

W = ACATTAGGGAGG
X = ACATAAGGGAGG
Y = CCATGAGGGAGG
Z = CCATCGGGAAGG
a1 = ACATAAGGGAGG
b1 = CCATAAGGGAGG

Table 14.2 Edge
e1 = (W, a1) in tree T1;
note cost(e1) = 1.

W = ACATTAGGGAGG
a1 = ACATAAGGGAGG

Table 14.3 Edge
e2 = (X, a1) in tree T1; note
cost(e2) = 0.

a1 = ACATAAGGGAGG
X = ACATAAGGGAGG

and a1 are identical sequences. We calculate the cost of each edge, one by one; see

Tables 14.2–14.6. Based upon our edge cost calculations, we see that the total cost of

this tree is 6.

We now compute the cost of tree T 2; this tree has W and Y adjacent, and X and Z

adjacent. Let’s call the internal nodes a2 and b2, with a2 adjacent to W and Y , and b2

adjacent to X and Z . To set the sequences a2 and b2 we go through each site, one by

one, using the same techniques as we used for the tree T 1. The same analysis we did

for T 1 can be applied to sites 2 through 12, but the first site requires more discussion.

Note that on site 1, W and X have A, while Y and Z have C. The best we can

do for this tree is to label both a2 and b2 with A (or both with C), and for this label

we would have the site changing twice on this tree – it is not possible to have the

site change only once! Therefore, we can assign identical labels for a2 and b2, with

a2 = b2 = ACATAAGGGAGG. Note that a2 = b2 = X . See Table 14.7 for the set of

six sequences labeling the tree T 2.
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Table 14.4 Edge
e3 = (a1, b1) in tree T1;
note cost(e3) = 1.

a1 = ACATAAGGGAGG
b1 = CCATAAGGGAGG

Table 14.5 Edge
e4 = (b1, Y ) in tree T1;
note cost(e4) = 1.

b1 = CCATAAGGGAGG
Y = CCATGAGGGAGG

Table 14.6 Edge
e5 = (b1, Z ) in tree T1;
note cost(e5) = 3.

b1 = CCATAAGGGAGG
Z = CCATCGGGAAGG

The total cost of this tree, with this labeling, can be computed either by adding up

the changes on each site, or by adding up the changes on each edge. We demonstrate

this calculation by computing this on an edge-by-edge basis. Recall that a2 is adjacent

to W and Y and b2 is adjacent to X and Z , and the five edges in the tree are therefore

(W, a2), (Y, a2), (a2, b2), (b2, X ), and (b2, Z ). Since a2 = b2 = X , there are no changes

on edges (a2, b2) or (b2, X ), and so the only edges on which there are any changes are

(W, a2), (Y, a2), and (b2, Z ). By examining Table 14.7 we see that edge (W, a2) has

cost 1, edge (Y, a2) has cost 2, and edge (b2, Z ) has cost 4, giving the total cost of 7.

Finally, if we look at T 3, we can do the same analysis, and produce the optimal

sequences for its internal nodes. This tree will also have a total cost of 7. (This is left

to the reader as an exercise!)

Thus, the best solution to maximum parsimony on this four-sequence input is T 1,

and it has total cost 6. Note that we computed this by hand. The technique is: for

each tree, we determined the sequences at each internal node site-by-site, using the

pattern at the leaves. Once the sequences at the internal nodes were computed, we

then calculated the cost of the tree by computing the cost of each edge, and adding
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Table 14.7 The six
sequences for the tree T2.

X = ACATAAGGGAGG
W = ACATTAGGGAGG
Y = CCATGAGGGAGG
Z = CCATCGGGAAGG
a2 = ACATAAGGGAGG
b2 = ACATAAGGGAGG

them up. A running time analysis for this special case of four-leaf trees shows that

this approach takes O(k) time, where k is the number of sites (columns) in input

sequences.

This is good, but can we apply this technique to larger data sets?

Suppose we had a five-taxon input to maximum parsimony. We could look at all

the unrooted fully resolved trees on five leaves, and try to find the optimal sequences

for the internal nodes. How much time would this take? The first thing to note is that

while there were only three trees on four leaves, there are 15 trees on five leaves (go

ahead and write them out!). So this will take more time. But what about scoring each

tree, i.e. finding the optimal sequences for the internal nodes? This, it turns out, can

still be done in polynomial time. How this is done is beyond the scope of this chapter,

but it works! And rest assured, it is not too difficult to learn. The algorithm for finding

the optimal sequences for the internal nodes of a given tree uses a special algorithmic

technique, called Dynamic Programming, to solve the problem exactly. The running

time for computing these optimal sequences is O(nk), where there are n leaves and

k sites. That’s a pretty efficient algorithm – it’s “linear-time” in the input size (the

matrix itself uses O(nk) space). This is important enough that we will highlight it as a

theorem:

Theorem 1. Let s1, s2, . . . , sn be DNA sequences with k sites. Let T be a tree on leaf

set {s1, s2, . . . , sn}. Then we can compute the optimal sequences for the internal nodes

of the tree T so as to minimize the total cost of the tree (its parsimony score) in O(nk)

time. In other words, we can solve Maximum Parsimony on a fixed tree in O(nk) time.

See [3] for more information about this algorithm.

Using this algorithm to compute the cost of a tree allows us to consider an exhaustive

search technique, whereby we examine every tree for the input sequences, score the

tree (that is, compute the optimal sequences giving the smallest total cost), and return

the tree that has the best cost. How much time does this take? The running time

is the product of the number of trees and the cost of computing the score of each
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Table 14.8 The number of
unrooted fully resolved trees on n
leaves.

Number of leaves Number of trees

4 3
5 15
6 105
7 945
8 10,395
9 135,135
10 2,027,025
20 2.2 ×1020

tree. Can we express the number of fully resolved, unrooted trees on n leaves with

a formula? Yes! Unfortunately, it is a large number – the number of these trees is

(2n − 5) × (2n − 7) × . . . 3, and this is a big number even for relatively small values

of n (see Table 14.8). Thus, the number of trees on 10 leaves is already more than

2,000,000. So attempts to solve maximum parsimony by hand are limited to very small

numbers of taxa. With a good computer, exact analyses can be performed on data sets

with about 20 or (sometimes) 30 taxa. However, analyses of larger data sets cannot be

done exactly; even today’s supercomputers cannot enable exhaustive search analyses

of data sets of the size that biologists want to analyze!

To summarize this discussion, since solving maximum parsimony on a single n

leaf tree takes O(nk) time, when the input sequences are all of length k, and there

are (2n − 5)!! = (2n − 5)x(2n − 7)x ... x3 trees, the exhaustive search technique will

take the product of these two numbers. In other words:

Theorem 2. The exhaustive search technique for solving Maximum Parsimony uses

O((2n − 5)!!nk) time, where (2n − 5)!! = (2n − 5) × (2n − 7) × . . . × 3.

However, since biologists try to solve maximum parsimony on much larger data

sets, with hundreds of sequences (and sometimes thousands) [4], what do they do?

Here is where our earlier discussion becomes relevant. Unfortunately, like maximum

independent set and 3-colorability, maximum parsimony is one of those NP-hard

problems. And this too is important, so we make it a theorem:

Theorem 3. The Maximum Parsimony problem is NP-hard (from [5]).
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Figure 14.4 Trees T and T ′ are related by one NNI move.

And so, while exact algorithms based upon exhaustive search (or branch-and-bound)

can be used to solve maximum parsimony, these are limited to small data sets (with up

to at most 30 sequences). Beyond such data set sizes, heuristics are used for “solutions”

to maximum parsimony.

4.1.2 Heuristics for maximum parsimony
We will now discuss different heuristics for maximum parsimony. Remember that it

is an “easy” problem to compute the “cost” of a tree (i.e. to compute the optimal

sequences for the internal nodes, so as to have the minimum cost), in that it can be

calculated in linear time. We will use that fact throughout this section. Thus, when we

say we “score the current tree,” or “compute the cost of the current tree,” we mean that

we will apply the polynomial time algorithm to the current tree with leaves labeled by

sequences, in order to score the tree.

The simplest heuristics for maximum parsimony use a “Greedy Algorithm” to find a

better tree. These greedy algorithms perform a search through “treespace”, and always

move to a new tree when the score improves, and never move to the new tree if the

score gets worse. One such move is the NNI (nearest neighbor interchange) move,

which swaps subtrees that are separated by a single internal edge (Figure 14.4).

It is known that all pairs of trees are connected by some sequence of NNI moves,

and so it is possible to explore all possible trees on the input sequence set, using NNI

moves. A heuristic search, based upon NNI moves, would have this basic structure:

Step 1: Start by computing an initial tree for the input sequences, and compute its

cost. The initial tree can be computed in many ways, including by using a random
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tree, or by adding sequences sequentially to a tree, each time placing the newly

added sequence optimally into the tree so as to minimize the total cost.

Step 2: Modify the current tree by using an NNI move, and score the new tree. If

the score improves, replace the current tree by the new tree, and begin again at

the start of Step 2. If the score is not better, then explore other NNI moves. If all

NNI moves fail to improve the score, then exit, and return the current tree as the

best tree.

By its structure, this method will only stop when all the trees that are one NNI move

from the current tree have a worse score. Thus, when the heuristic stops and returns

a tree, that tree will be a “local optimum,” meaning that none of its NNI neighbors

have a better score. It’s very important to realize that trees that are local optima are

not necessarily global optima, in that they can have very poor scores compared to the

global optima. Also, this definition depends on the definition of “neighbor,” and that

this in turn depends upon the specific “move” that is used to explore treespace. The

algorithm we described above, however, is based on the NNI move, which only has

2(n − 3) neighbors.2

Because all heuristics for maximum parsimony can get stuck in local optima, the best

heuristics include techniques to “get out of local optima.” Typically, these heuristics

accept a move even if it produces a poorer score, with a probability that depends upon

the difference in the tree score. By design, these methods could continue indefinitely –

getting into local (and perhaps global) optima, using randomness to exit the local/global

optima, and repeating the process. To stop this process, the algorithm designer adds

a “stopping rule,” which ensures that the heuristic will eventually exit and return a

tree. Simple stopping rules, based upon some fixed number of iterations or number

of hours, can be used. More frequently, however, the stopping rule is based upon the

heuristic search not having found any improvement in the score over some number of

iterations.

Note that by design, unless the stopping rule is based upon the total number of

hours or number of iterations, it is not all that easy (and is sometimes impossible) to

predict when heuristics like these will stop. That is, whereas before we were able to

talk about running times, and could give upper bounds on the running time of different

algorithms, running times of heuristics of this sort are described anecdotally, through

empirical studies, on real or simulated data sets.

The combination of effective search techniques, with randomness to exit local

optima, has produced the most accurate methods – in the sense that they produce the

best scores (smallest total parsimony scores). However, even the best methods can

2 To see this, note that every NNI move is performed around a single internal edge in the tree, that there are two
NNI moves around any specific edge, and that there are n − 3 internal edges in a tree on n leaves.
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still take a very long time on some large data sets. Furthermore, there can be many

trees with the same optimal score found during a search, and biologists are typically

interested in seeing as many of the optimal trees. For these reasons, some phylogenetic

analyses have very long running times, using months or years of analysis.

DISCUSSION AND RECOMMENDED READING

Phylogenetic estimation involves solving NP-hard problems, which are by their
nature very hard to solve exactly. As a result, when performing a phylogenetic
estimation on a large data set, biologists use heuristics to find phylogenetic trees
that have good scores, but which may not have the optimal scores for their input
data sets. In particular, the best methods for maximum parsimony (one of the
major approaches for phylogeny estimation, and an NP-hard problem) are not
guaranteed to produce the true optimal solutions, even when run for a very long
time. Because of the importance of phylogenetic estimation, biologists are willing
to dedicate many weeks (sometimes months or years) of computational effort in
order to obtain highly accurate phylogenetic trees. This means that new heuristics
are still being developed, in order to make it possible for highly accurate results
to be obtained on the large data set analyses that are to come.

This chapter focused on the maximum parsimony method of phylogeny
estimation, but there are other methods of phylogeny estimation that are very
popular. For further reading into this important research area, see [6–12].

QUESTIONS

(1) What does it mean to say that a computational problem is NP-hard?
(2) How do biologists compute evolutionary trees?
(3) Why is computing evolutionary trees difficult?
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REGULATORY NETWORKS





CHAPTER FIFTEEN

Biological networks uncover
evolution, disease, and gene
functions

Nataša Pržulj

Networks have been used to model many real-world phenomena, including biological
systems. The recent explosion in biological network data has spurred research in analysis and
modeling of these data sets. The expectation is that network data will be as useful as the
sequence data in uncovering new biology. The definition of a network (also called a graph) is
very simple: it is a set of objects, called nodes, along with pairwise relationships that link the
nodes, called links or edges. Biological networks come in many different flavors, depending on
the type of biological phenomenon that they model. They can model protein structure: in these
networks, called protein structure networks, or residue interaction graphs (RIGs), nodes
represent amino acid residues and edges exist between residues that are close in the protein
crystal structure, usually within 5 Å (Figure 15.1). Also, they can model protein–protein
interactions (PPIs): in these networks, proteins are modeled as nodes and edges exist between
pairs of nodes corresponding to proteins that can physically bind to each other (Figure 15.2a).
Hence, PPI and RIG networks are naturally undirected, meaning that edge AB is the same as
edge BA. When all proteins in a cell are considered, these networks are quite large, containing
thousands of proteins and tens of thousands of interactions, even for model organisms. An
illustration of the PPI network of baker’s yeast, Saccharomyces cerevisiae, is presented in
Figure 15.2b. Networks can model many other biological phenomena, including transcriptional
regulation, functional associations between genes (e.g. synthetic lethality), metabolism, and
neuronal synaptic connections.
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Figure 15.1 An illustration showing a residue interaction graph.
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Figure 15.2 (a) A schematic representation of a protein–protein interaction (PPI) network.
(b) Baker’s yeast protein–protein interaction (PPI) network downloaded from Database of
Interacting Proteins (DIP).

In this chapter, we give an introduction to network analysis and modeling methods that are
commonly applied to biological networks. We mainly focus on protein–protein interaction (PPI)
networks as a biological network example, but the same methods can be applied to other
biological networks. The chapter is organized as follows. In Section 1, we describe the main
techniques that yielded large amounts of PPI and related biological network data. Then in
Section 2, we talk about the main computational concepts related to network representation
and comparison. In Section 3, we describe some of the main network models and illustrate
their use to solve real biological problems. In Section 4, we show how biological function,
involvement in disease and homology can be extracted from analyzing network data sets.
Finally, in Section 5, we give an overview of the major approaches for network alignment.
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Figure 15.3 An illustration of the “spoke” and “matrix” models for defining PPIs in
pull-down experiments.

1 Interaction network data sets

Experimental techniques have been producing large amounts of network data describ-

ing gene and protein interactions. The main techniques include yeast two-hybrid (Y2H)

assays (e.g. [1]), affinity purification coupled with mass spectrometry (e.g. [2]), and

synthetic-lethal and suppressor networks (e.g. [3]). They have produced partial net-

works for many model organisms (e.g. [1–3]) and humans (e.g. [4]), as well as for

microbes (e.g. [5]), viruses,1 and human–viral interactions [6]. Since these networks

are very large and complex (e.g. see Figure 15.2b), it is not possible to understand

them without computational analyses and models.

Our current data sets are noisy due to limitations in experimental techniques. Also,

they are largely incomplete, since the experimental techniques are only capable of

extracting samples of interactions that exist in the cell. Furthermore, they contain

sampling and data collection biases introduced by humans (e.g. see [7]). For example,

more data have been collected in parts of the networks relevant for human disease due

to increased interest and availability of funding. Another example is the “spoke” versus

the “matrix” model that are used to represent interactions obtained from pull-down

experiments. In the “spoke” model, interactions are assumed between the tagged “bait”

protein and all of the protein interaction target (“prey”) proteins, while in the “matrix”

model, additional interactions are assumed between all preys as well (Figure 15.3).

Both of these models simplify the biological reality by making a broad assumption

that is sometime false and thus add noise. Due to such sampling and data collection

1 http://mint.bio.uniroma2.it/virusmint/.
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Figure 15.4 (a) The adjacency matrix of the network from Figure 15.2a. (b) The adjacency
matrix of the PPI network from Figure 15.2b, illustrating its sparsity.

biases, PPI networks are currently quite sparse with some parts being more dense than

others (e.g. parts relevant for human disease).

There are two main standards for representing network data. The first one is called

an edge list, or an adjacency list – it is simply a list of edges in the network. For

example, the edge list of the network presented in Figure 15.2a is:

{A, B}
{B, C}
{B, D}
{D, E}

Recall that we are dealing with undirected networks, so for example, edge {A,B}
is the same as edge {B,A}. The other standard way of representing a network is an

adjacency matrix. In an adjacency matrix, rows and columns represent nodes, and the

matrix entries are 1s and 0s, with a 1 in location (i, j) corresponding to the presence

of an edge connecting node i to node j, and a 0 in location (i, j) corresponding to

the absence of such an edge. For example, the adjacency matrix representation of the

network in Figure 15.2a is presented in Figure 15.4a. As illustrated in this figure,

adjacency matrices of networks with no directions on edges are symmetric, meaning

that entry (i, j) is equal to the entry ( j, i) in the matrix; this is because edges are

undirected. We illustrate the sparsity of the PPI network data by visually displaying
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Figure 15.5 Isomorphic graphs G and H with an isomorphism function, f , that maps nodes
of G to nodes of H . H is a re-drawing of G , since bijective function f satisfies: ab is an edge
of G and f (a)f (b) = 12 is an edge of H , bd is an edge of G and f (b)f (d) = 23 is an edge of
H , dc is an edge of G and f (d)f (c) = 34 is an edge of H , and ca is an edge of G and
f (c)f (a) = 41 is an edge of H .

the adjacency matrix of the yeast PPI network from Figure 15.2b; in its adjacency

matrix, presented in Figure 15.4b, the 1s (representing interactions) are displayed as

colored dots, while 0s (non-interactions) are not colored. Adjacency list and matrix

representations of the data are usually used as input into network analysis software

tools (e.g. GraphCrunch [8], Citoscape2).

Despite the noise and incompleteness of the interaction networks, these data sets still

present a rich source of biological information that computational biologists have begun

to analyze. Analyzing these data, comparing them, and finding well-fitting network

models to them is non-trivial not only due to the low quality of currently available

biological network data, but also due to the provable computational intractability of

many graph theoretic problems. Since comparing large networks is computationally

hard, approximate or heuristic solutions to the problem have been sought. We address

this topic in the next section.

2 Network comparisons

Finding similarities and differences between data sets or between data and models

is essential for any data analysis. Hence, if we are dealing with network data, we

need to be able to compare large networks. However, comparing large networks is

computationally intensive for the following reason. The basis of network comparison

lies in finding a graph isomorphism between two networks, which can be thought of

as re-drawing a graph in a different way [9]. An illustration of an isomorphism is

presented in Figure 15.5.

2 http://www.cytoscape.org.
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Figure 15.6 The degree distribution of the network from Figure 15.2a.

A subgraph of graph G is a graph whose nodes and edges belong to G. For two

networks G and H taken as input into a computer program, determining whether G

contains a subgraph isomorphic to H is computationally infeasible (the technical term

is NP-complete, see [9] for details). Furthermore, even if subgraph isomorphism were

computationally feasible, it would still be inappropriate to look for exact matches of

biological networks due to biological variation. Hence, we want our network com-

parison methods intentionally to be more flexible, or approximate. Easily computable

approximate measures of network topology that are commonly used for comparing

large networks are referred to as network properties.

Network properties can historically be roughly divided into two main groups: global

properties and local properties. Macroscopic statistical global properties of large net-

works are conceptually and computationally easy, and thus they have been extensively

studied in biological networks. The most widely used global network properties are

the degree distribution, clustering coefficient, clustering spectra, network diameter,

and various forms of network centralities [10]. A global property of a data network

and of a model network are computed, and if they are similar, then we say that the

model network fit the data with respect to that property. The above-mentioned global

properties are defined as follows.

The degree of a node is the number of edges touching the node. Hence, in the network

presented in Figure 15.2a, nodes A, C, and E have degree 1, node D has degree 2,

and node B has degree 3. The degree distribution of a network is the distribution of

degrees of all nodes in the network. Equivalently, it is the probability that a randomly

selected node of a network has degree k (this probability is commonly denoted by

P(k)). An illustration of the degree distribution of the network from Figure 15.2a is

presented in Figure 15.6. Many biological networks have skewed, asymmetric degree

distributions with a tail that follows a “power-law” given by the following formula:

P(k) ∼ k−γ , for some fixed γ > 0. All such networks have been termed “scale-free”

[10]. This power-law means that the largest percentage of nodes in a scale-free network
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a
HG I

Figure 15.7 G and H are networks of the same size and the same degree distribution
whose structure is very different. The clustering coefficient of network G is 1, the clustering
coefficient of network H is 0, while the clustering coefficient of network I is between 0
and 1.

has degree 1, a much smaller percentage of nodes has degree 2, and so forth, but that

there exist a small number of highly linked nodes called “hubs.”

The clustering coefficient of a node is defined as follows. Neighbors of node v are

nodes that share an edge with v. We look at the neighbors of the node in question, v,

and we count how many edges exist between these neighbors as a percentage of the

maximum possible number of edges between the neighbors. For example, each node of

network G in Figure 15.7 has two neighbors, the neighbors are connected by an edge,

and the maximum possible number of edges linking two nodes is 1; thus, the clustering

coefficient of each node in network G is 1/1 = 1. Similarly, we can compute that the

clustering coefficient of each node in network H in Figure 15.7 is 0, since there are no

edges between the neighbors of any node in H . An example of a clustering coefficient

that is strictly between 0 and 1 is that of node a in graph I in the same figure: the

clustering coefficient of a is 1/3, since a has 3 neighbors and only one edge exists

between them while the maximum possible number of edges between the 3 neighbors is

3. The clustering coefficient of a network is defined simply as the average of clustering

coefficients of all of its nodes. Clearly, it is always between 0 and 1. The clustering

coefficient of network G in Figure 15.7 is 1, the clustering coefficient of network H

in the same figure is 0, and the clustering coefficient of network I in the same figure

is 7/12 (exercise: verify that the clustering coefficient of network I is equal to 7/12).

Hence, G and H are very different with respect to their clustering coefficients, even

though they are of the same size and have the same degree distribution. The clustering

spectrum of a network is defined as the distribution of average clustering coefficients

of degree k nodes over all degrees k in the network.

The diameter of a network describes how “far spread” the network is in the following

sense. We consider all possible pairs of nodes and for each pair find the shortest path

between them; the maximum length over all those paths is the network diameter. We

can also take the average of shortest path lengths between all pairs of nodes in a

network to obtain the network’s average diameter.
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bait 2

14 preys

bait 1

Figure 15.8 An illustration of a bias introduced to the network structure by sampling a much
smaller number of baits than preys in pull-down experiments. The baits are forced to be hubs
and the preys are of low degree.

Note, however, that networks with exactly the same value for one network property

can have very different structures. In the example in Figure 15.7, network G consisting

of 3 triangles and H network consisting of one 9-node ring (cycle) are of the same

size (i.e. they have the same number of nodes and edges) and have the same degree

distribution (each node has degree 2), but their network structure is clearly very

different. The same holds for other global network properties [11]. Furthermore, since

molecular networks are currently largely incomplete, global network properties of such

incomplete networks do not tell us much about the structure of the entire real networks.

Instead, they describe the network structure produced by the sampling techniques used

to obtain these networks (e.g. [7]). For example, in bait–prey experiments for PPI

detection, if the number of baits is much smaller then the number of preys, then all

of the baits will be detected as hubs, and all of the preys will be of low degree, as

illustrated in Figure 15.8. Thus, global statistics on incomplete real networks may be

biased and even misleading with respect to the currently unknown complete networks.

Conversely, as mentioned above, certain local neighborhoods of molecular networks

are well studied, usually the regions of a network relevant for human disease. Therefore,

local statistics applied to the well-studied areas of a network are more appropriate.

Local network properties include network motifs and graphlets (e.g. [11–13]). Anal-

ogous to sequence motifs, network motifs have been defined as subgraphs that recur in

a network at frequencies much higher than those found in randomized networks [12].

Recall that a subgraph (or a partial subgraph) of a network G is a network whose

nodes and edges belong to G. An induced subgraph of G is a subgraph that contains
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Figure 15.9 (a) All 2-, 3-, 4-, and 5-node graphlets. (b) A 5-node cycle and a 5-node path; all
nodes in the cycle are the same, but the nodes on the path are topologically different.

all edges of G connecting the chosen subset of nodes. For example, a 3-node partial

subgraph of a triangle can be a 3-node path (a 3-node path is denoted by 1 in Figure

15.9a), but a triangle has only one induced subgraph on 3 nodes, which is a triangle.

Note that when we are finding network motifs, it is not clear what subgraphs are more

frequent than expected at random, since it is not clear what should be expected at ran-

dom [14]. Nevertheless, motifs have been very useful for finding functional building

blocks of transcriptional regulation networks, as well as for differentiating between

different types of real networks. Also, being partial subgraphs, they are appropriate for

studying biological networks, since not all interactions in real biological networks need

to concurrently occur in a cell, while they are all present in the network representations

that we study.

Approaches for studying network structure have been proposed that are based on

the frequencies of occurrences of all small induced subgraphs in a network (not only

overrepresented ones), called graphlets (Figure 15.9a) [11, 13, 15]. These approaches

are free from the biases that motif-based approaches have, namely biases introduced

by selection of a random graph model (defined below) for the data that is necessary to

define network motifs (graph models are described below), as well as by the choice of

partial rather than induced subgraphs for studying network structure. That is, graphlets

do not need to be overrepresented in a data network and this, along with being induced,

distinguishes them from network motifs. Note that whenever the structure of a graph

(or a graph family) is studied, we care about induced rather than partial subgraphs.

If we simply find the frequency of each of the graphlets in a network and compare
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such frequency distributions, we can measure structural similarity between networks

[11]. We can further refine this similarity measure by noticing that in some graphlets,

the nodes are distinct from each other. For example, in a ring (cycle) of five nodes,

every node looks the same as every other, but in a chain (path) of five nodes, there are

two end nodes, two near-end nodes, and one middle node (Figure 15.9b). This idea

of finding symmetry groups within graphlets can be mathematically formalized [13].

Network analysis and the modeling software package called GraphCrunch3 provides

graphlet-based network comparisons [8].

When we are comparing two networks, one of their network properties can indicate

that the networks are similar, while another can indicate that they are different. Recall

that networks G and H in Figure 15.7 have identical degree distributions, but different

clustering coefficients. There exist approaches that try to reconcile between such

contradictions in the agreement of different network properties (see [16] for details).

3 Network models

In this section, first we describe the most commonly used network models and then we

discuss how they can be used to learn new biology from biological network data.

There exist many different network (or random graph) models that we could com-

pare the data against, for example, to find network motifs [14]. The earliest such model

is the Erdos–Renyi random graph model. An Erdos–Renyi random graph on n nodes is

constructed so that edges are added between pairs of nodes with the same probability p.

Many of the properties of Erdos–Renyi random graphs are mathematically well under-

stood. Therefore, they form a standard model to compare the data against, even though

they are not expected to fit the data well. Since Erdos–Renyi graphs, unlike biologi-

cal networks, have “bell-shaped” degree distributions and low clustering coefficients,

other network models for real-world networks have been sought. One such model is the

generalized random graphs model. In these graphs, the edges are randomly chosen as

in Erdos–Renyi random graphs, but the degree distribution is constrained to match the

degree distribution of the data (for their construction, see [10]). Another commonly

used network model is that of small-world networks. In these networks, nodes are

placed on a ring and connected to their i th neighbors on the ring for all i smaller than

some given number k, but there is also a small number of random links across the ring

(as illustrated in Figure 15.10b). Hence, small-world networks have small diameters

(meaning that their diameter is an order of magnitude smaller than the number of

their nodes) and large clustering coefficients [10]. The scale-free network model has

3 http://bio-nets.doc.ic.ac.uk/graphcrunch/ and http://bio-nets.doc.ic.ac.uk/graphcrunch2/.
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(a) (b)

(c) (d)

Figure 15.10 Examples of model networks. (a) An Erdos–Renyi random graph. (b) A
small-world network. (c) A scale-free network. (d) A geometric random graph.

already been mentioned above; scale-free networks include an additional condition

that the degree distribution follows a power-law [10]. Another relevant graph class is

that of geometric graphs defined as follows. If we have a collection of points dispersed

in space, we pick some constant distance ε and say that two points are “related” if they

are within ε of each other. The relationship can be represented as a graph, where each

point in space is a node and two nodes are connected if they are within distance ε. If the
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points are distributed at random, then it is a geometric random graph. Illustrations of

networks of about the same size, but that belong to these different network models are

presented in Figure 15.10; even without computing any network properties for them,

we can just look at them and conclude that their structure is very different. Studies

examining global network properties of early PPI networks tried to model them with

scale-free networks. Later, the above described graphlet-based measures of local net-

work structure demonstrated that newer and more complete PPI network data are better

modeled by geometric graphs [11, 13]. It is important to be aware of different network

models, since different biological networks (e.g. metabolic networks, transcriptional

regulation networks, neuronal wiring networks) might be best modeled by different

network models.

The degree distributions of many biological networks approximately follow a power-

law. Hence, many variants of scale-free network growth models have been proposed.

For PPI networks, such models are based on biologically motivated gene duplication

and mutation network growth principles (e.g. [17]): networks grow by duplication

of nodes (genes), and as a node gets duplicated, it inherits most of the interactions

of the parent node, but gains some new interactions. Similarly, gene duplication and

mutation-based geometric network growth models have been proposed [18]. These

models are based on the following observations. All biological entities, including

genes and proteins as gene products, exist in some multidimensional biochemical

space. Genomes evolve through a series of gene duplication and mutation events,

which are naturally modeled in the above-mentioned biochemical space: a duplicated

gene starts at the same point in biochemical space as its parent, and then natural

selection acts either to eliminate one, or cause them to separate in the biochemical

space. This means that the child inherits some of the neighbors of its parent while

possibly gaining novel connections as well. The farther the “child” is moved away

from its “parent,” the more different its biochemical properties.

How can we use network models to learn more about biology? Even though modeling

of biological networks is still in its infancy, network models have already been used

for such purposes. As mentioned above, network models are crucial for network motif

identification and network motifs are believed to be functional building blocks of

molecular networks. Another example of the use of network models is finding cost-

effective strategies for completing interaction maps, which is an active research topic

(e.g. see [19]). A scale-free network model has been used to propose a strategy for

time- and cost-optimal interactome detection [20]. Using the property that scale-free

networks contain hubs, this strategy proposes an “optimal walk” through the PPI

network using pull-down experiments, so that we preferentially choose hub nodes as

baits, since that way we would detect most of the interactions with the smallest number

of expensive pull-down experiments. However, the danger of using an inadequate
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network model for such a purpose (for instance, if real PPI networks do not have hubs)

is that we might waste time and resources. Furthermore, we might end up with a wrong

identification of the “complete” interactome maps, since the model might tell us never

to examine certain parts of the interactome.

Network models have also been used successfully for other biological applications.

In addition to the above-mentioned use of network models for fast data collection,

another reason for modeling biological networks is the development of fast heuristic

methods for data analysis. One property of every heuristic approach is that it performs

poorly on some data. Thus, heuristics are designed, with the help of models, to work

well for a particular application domain, for example, for PPI networks. Geometric

graph models have been used for this purpose. In particular, they were used to design

efficient strategies for graphlet count estimation [21] in PPI networks. Another appli-

cation is de-noising of PPI network data for which geometric graphs have been used,

as follows [22]. A method that directly tests whether PPI networks have a geometric

structure was used to assess the confidence levels of PPIs obtained by experimental

studies, as well as to predict new PPIs, thus guiding future biological experiments [22].

Specifically, it was used to assign confidence scores to physical human PPIs from the

BioGRID database. Also, it was used to predict novel PPIs, a statistically significant

fraction of which corresponded to protein pairs involved in the same biological process

or having the same cellular localization. This is encouraging, since such protein pairs

are more likely to interact in the cell. Moreover, a statistically significant portion of the

predicted PPIs was validated in the HPRD database and the newer release of BioGRID.

4 Using network topology to discover biological function

Analogous to extracting biological knowledge by analyzing genetic sequences, biolog-

ical networks are a new, rich source of biological information from which we started

learning about biology. Finding the relationship between network topology and biolog-

ical function is a step in this direction. Network-based prediction of protein function

and the role of networks in disease have been studied [23, 24].

The simplest property of a node in a network is its degree. Hence, early approaches

studied correlations between high protein connectivity (i.e. high degree) in a PPI

network and its essentiality in baker’s yeast [25]. Even though early data sets showed

such correlations, this simple technique failed on newer PPI network data [26]. Similar

conflicting results have been reported for correlations between protein connectivity

and evolutionary rates (e.g. [27]). Similarly, correlations between connectivity and

protein function were examined [28].
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Other methods for linking network structure to biological function were based on

the premise that proteins that are closer in the PPI network are more likely to have

similar function (e.g. [29]). Attempts to utilize somewhat more sophisticated graph

theoretic methods for this purpose have been examined, including cut-based and net-

work flow-based approaches (e.g. [30]) (informally, a cut is a division of a network into

disconnected parts, while a network flow can be thought of as a flow of fluids in pipes).

Also, various clustering methods (that usually look for densely interconnected subnet-

works) have been applied to PPI networks and functional homogeneity of proteins in

the clusters has been used for protein function prediction (e.g. [2, 28, 31]).

Human PPI networks have been analyzed in the search for topological properties

of disease-related proteins. The hope is to get insights into diseases that would lead

to better drug design. It has been concluded that disease-related proteins have high

connectivity, are closer together, and are centrally positioned within the PPI network

[24]. However, a controversy arises again, since, as discussed above, disease-causing

proteins may exhibit these properties in a network simply because they have been better

studied than non-disease proteins.

Graphlets have been used to generalize the node degree into a topologically stronger

measure that captures the structural details of individual nodes in a network. This

measure has been used to relate the network structure around a node to protein function

and involvement in disease (e.g. [15]). The generalization is achieved as follows. Recall

that the degree of a node is the number of edges it touches. An edge is the only graphlet

with two nodes (graphlet 0 in Figure 15.9a). Thus, analogous to the node degree, we

can define a graphlet degree of node v with respect to each graphlet i in Figure 15.9a,

in the sense that the i-degree of v counts how many graphlets of type i touch node

v [13]. That is, we count not only how many edges a node touches (this is the node

degree), but also how many triangles it touches, how many squares it touches, etc.

Hence, the node degree is simply the 0-degree. Also, it matters where a node touches

a graphlet that is not “symmetric”; for example, an edge is symmetric, but in a 3-node

path, the end nodes look the same, but the middle node is different (see [13, 15] for

details). Hence, we need to count how many 3-node paths a node touches at an end and

also how many 3-node paths it touches at the middle. By counting this for all graphlets,

we get the graphlet degree vector (GDV) or GD-signature of a node. An example of

computing a GD-signature is presented in Figure 15.11.

Since the degree of a protein in a PPI network is a weak predictor of its biological

function, the question is whether the GD-signature captures the link between network

topology and biological function better than the degree. Indeed, it has been shown

that GD-signatures correspond to similarity in biological function and involvement

in disease that could not have been discovered from node degrees and the function

predictions have been phenotypically validated [15]. For example, 27 genes identified
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GDV(v)=(2,1,1,0,0,1,0,...0)

v

Figure 15.11 A small 4-node network. The graphlet degree vector of node v is
(2,1,1,0,0,1,0 ...), because v is touched by two edges, the end of one 3-node path, the middle
of another 3-node path, and the middle of a 4-node path.

as negative regulators of melanogenesis by an RNAi functional genomics approach

were also identified as cancer gene candidates based on their GD-signature similar-

ities [15]. Of these 27 genes, 85%, i.e. 23 of them, were validated in the literature

as cancer-associated genes. Interestingly, 20 of these 27 genes are kinases, enzymes

that are known to dynamically regulate the process of cellular transformation. Sev-

eral of these kinases are known regulators of melanogenesis. Also, from the topol-

ogy around nodes in PPI networks described by GD-signatures, by finding nodes

that have GDVs similar to GDVs of nodes that are known regulators of melanogen-

esis in the human PPI network, novel regulators of melanogenesis in human cells

were successfully identified and validated by systems-level functional genomics RNAi

screens [15].

Similarly, GD-signatures were used to establish a link between network topology

around a node in a PPI network and homology [32]. The GDV similarity of homologous

proteins in a PPI network has been shown to be statistically significantly higher than that

of non-homologous proteins. When this topological similarity is compared with their

sequence identity, it has been shown that network similarity uncovers almost as much

homology as sequence identity. Hence, it has been argued that genomic sequence and

network topology are complementary sources of biological information for homology

detection, as well as for analyzing evolutionary distance and functional divergence of

homologous proteins.

A related topic is that of network-based approaches to systems pharmacology.

Network analyses of drug action are starting to be used as part of this emerging

field that aims to develop an understanding of drug action across multiple scales of

organismal complexity, from cell to tissue to organism [33]. Biochemical interaction

networks, such as PPI networks, have been linked into a “super-network” with networks

of drug similarities, interactions, or therapeutic indications. For example, a network

connecting drugs and drug targets (proteins affected by a drug) was constructed and

used to generate two “network projections:” (1) a network in which nodes are drugs
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Figure 15.12 An example of an alignment of two networks.

and they are connected if they share a common target; and (2) a network in which

nodes are targets and they are connected if they are affected by the same drugs [34]. By

analyzing these two network projections, conclusions have been made about existing

drugs affecting few novel targets, as well as about drug targets having higher degrees

than non-targets in the PPI network. Again, the latter might be an artifact of disease-

related parts of the PPI network being more studied. A survey of network-based

analyses in systems pharmacology can be found in [33].

5 Network alignment

Analogous to genetic sequence alignment, network alignment is expected to have a

deep impact on biological understanding. Network alignment is the general problem

of finding the best way to “fit” graph G into graph H . Note that in biological networks,

it is unlikely that G would exist as an exact subgraph of H due to noise in the data

(e.g. missing edges, false edges, or both) and also due to biological variation. For these

reasons, it is not obvious how to measure the “goodness” of this fit. A simple example

illustrating network alignment is presented in Figure 15.12. Analogous to genomic

sequence alignments, biological network alignments can be useful for knowledge

transfer, since we may know a lot about some nodes in one network and almost

nothing about aligned, topologically similar nodes in the other network. Also, network

alignments can be used to measure the global similarity between biological networks

of different species, and the resulting matrix of pairwise global network similarities

can be used to infer phylogenetic relationships [35]. However, unlike with the sequence
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Figure 15.13 An illustration of an aligned interaction, a gap, and a mismatch in a pathway
alignment. Vertical lines represent PPIs, horizontal dashed lines represent alignment between
proteins with significant sequence similarity (BLAST E-value ≤ E cutoff ). Adapted from [40].

alignment, the problem of network alignment is computationally infeasible to solve

exactly. Hence, approximate solutions are being sought.

Analogous to sequence alignments, there exist local and global network alignments.

Local alignments map independently each local region of similarity. For example, in

Figure 15.12, nodes D, E, F, G from the black network could simultaneously be aligned

to nodes D′, E′, F′, G′ as well as to nodes H′, I′, J′, K′ in the orange network. Thus,

such alignments can be ambiguous, since one node can have different pairings. On the

contrary, a global network alignment uniquely maps each node in the smaller network

to only one node in the larger network, as illustrated in Figure 15.12. However, this

may lead to suboptimal matchings in some local regions. For biological networks,

the majority of currently available methods used for alignment have focused on local

alignments (e.g. [36, 37]. Generally, local network alignments are not able to identify

large subgraphs that have been conserved during evolution (e.g. [35]). Global network

alignments have also been proposed (e.g. [35, 38, 39], but most of the existing methods

incorporate some a priori information about nodes, such as sequence similarities of
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Figure 15.14 The seed-and-extend approach used in GRAph ALigner (GRAAL) algorithm [35].
(a) The green nodes are chosen as seed nodes and aligned based on their GDV similarity score.
(b) The neighbors of seed nodes in the two networks are considered. (c) The neighbors of seed
nodes in the two networks are greedily aligned. (d) The shaded area represents the aligned
parts of the two networks. (e) The neighbors of aligned nodes in the two networks are
considered. (f) The neighbors of aligned nodes in the two networks are greedily aligned.

proteins in PPI networks (see below), or they use some form of learning on a set of

“true” alignments [38].

There are two main issues in each of the network alignment algorithms. First,

how to define similarity scores between nodes from different networks. Second, how

to quickly identify high-scoring alignments among the exponentially many possible

alignments. For PPI networks, the first issue is usually addressed by designing a node

similarity measure as a function of protein sequence similarity and some sort of their

topological similarity in the network (see below). The second issue is often solved by

greedy algorithms to reduce the computational time; a greedy algorithm makes locally

optimal choices at each step of its execution hoping to find the global optimum (but

usually with no proven guarantee of achieving it, so actual performance must be tested
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empirically). There exist many network alignment algorithms, so giving the details

of each is out of the scope of this chapter. Hence, we illustrate them on a couple of

examples.

In the simplest case, we can define similarity between a protein pair solely by their

sequence similarity. This is typically done by applying BLAST to perform all-to-

all alignment between sequences of proteins from two different networks. Then the

simplest network alignment would correspond to interactions across PPI networks

involving pairs of proteins in one species and their best sequence-matched proteins in

the other. However, network alignment algorithms go beyond this simple identification

of conserved protein interactions to identify large and complex network subgraphs

that have been conserved across species. Usually, this is done by having the highest-

scoring node pair between two networks aligned and used as an “anchor” or “seed”

for the search algorithm that extends around these seed nodes in a greedy way in each

of the networks looking for larger optimal network alignments (Figure 15.15). In the

remainder of this section, we describe algorithms illustrating these concepts.

The earliest network alignment algorithm, called PathBLAST, searches for high-

scoring pathway alignments between two networks [36, 40]. The alignments are scored

via the product of the probability that each aligned protein pair is truly homologous

(based on BLAST E-value of aligning the protein sequences) and that each aligned

PPI is a true interaction (based on false-positive rates associated with interactions).

This method has identified orthologous pathways between baker’s yeast and bacterium

Helicobacter pylori and 150 high-scoring pathway alignments of length four (four

proteins per path) were identified. Although the number of interactions that were

conserved between the two species was low, the use of “gaps” and “mismatches” in a

pathway (see Figure 15.16) allowed for detection of larger network regions that were

generally conserved. A gap occurs when a PPI in one path “skips over” a protein

in the other path; a mismatch is defined to occur when aligned proteins do not share

sequence similarity (Figure 15.13). As a validation that the identified aligned pathways

corresponded to conserved cellular functions, it was shown that the aligned network

regions were significantly enriched in certain biological processes.

A global network alignment algorithm that uses only network topology to score

node alignments is called GRAph ALigner (GRAAL) [35]. Since it uses only network

topology, it can be applied to any networks, not just biological ones. The alignments

of nodes are scored based on their GDV similarity described in Section 4, and do not

use the protein sequence information. The seed-and-extend approach used in GRAAL

works as follows (illustrated in Figure 15.14). The highest-scoring node pair (i.e. the

one with the highest GDV similarity) is used as a seed pair around which the greedy

algorithm “extends” trying to find the largest possible (in terms of the number of nodes

and edges) high-scoring aligned subgraphs. After the seed nodes are aligned (green
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Figure 15.15 GRAAL’s alignment of yeast and human PPI networks. Each node corresponds
to a pair of yeast and human proteins that are aligned. Alignment is determined based on GDV
similarity of the two proteins, without using sequence similarity. An edge between two nodes
means that an interaction exists in both species between the corresponding protein pairs.
Thus, the displayed networks appear, in their entirety, in the PPI networks of both species. The
second largest CCS consists of 286 interactions amongst 52 proteins; this subgraph shows very
strong enrichment for the same biological function (splicing) in both yeast and human PPI
networks. The figure is taken from [35].

nodes in Figure 15.14a), the neighbors of aligned nodes are considered (Figure 15.14b)

and aligned so that the score of the newly aligned nodes is maximized, i.e. pairs of

nodes with the highest GDV similarity are greedily aligned. In the illustration in Figure

15.14c, this corresponds to node 1 being aligned with node A, node 2 to node B, node

3 to node C, node 4 to node D, and node 5 to node E. Next, the neighbors of aligned

nodes that are not aligned yet are found (Figure 15.14e) and aligned using the same

principle. This is repeated until all nodes that can be reached are aligned. However,

this may result in some unaligned nodes in both networks. Also, to allow for gaps and

mismatches, GRAAL repeats this seed-and-extend approach on modified networks: in

each of the networks, edges are added to link nodes at distance ≤ p, first for p = 2

and after aligning such modified networks, then the same is repeated for p = 3. This
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Figure 15.16 Comparison of the phylogenetic trees for protists obtained by genetic sequence
alignments (left) and GRAAL’s metabolic network alignments (right). The following
abbreviations are used for species: CHO, Cryptosporidium hominis; DDI, Dictyostelium
discoideum; CPV, Cryptosporidium parvum; PFA, Plasmodium falciparum; EHI, Entamoeba
histolytica; TAN, Theileria annulata; TPV, Theileria parva; the species are grouped into
“Alveolates,” “Entamoeba,” and “Cellular Slime mold” classes [35].

allows for a path of length p in one network to be aligned to a single edge in the other,

which is analogous to allowing insertions and deletions in sequence alignment.

When applied to human and baker’s yeast PPI networks, GRAAL exposes regions

of network similarity about an order of magnitude larger than other algorithms. The

algorithm aligns network regions of yeast and human in which a large percentage of

proteins perform the same biological function in both species. For example, GRAAL

[35] aligns a 52-node subnetwork between yeast and human in which 98% of yeast

and 67% of human proteins are involved in splicing (Figure 15.15). This result is

encouraging, since splicing is known to be conserved even between distant eukaryotes.

Because the algorithm aligns functionally similar regions, it is further used to transfer

biological knowledge from annotated to unannotated parts of aligned networks.

Furthermore, analogous to sequence alignment, GRAAL is also used to infer phy-

logeny, with the intuition that species with more similar network topologies should be

closer in the phylogenetic tree. The algorithm has been used to infer phylogenetic trees

for protists and fungi from the alignments of their metabolic networks, and the result-

ing trees show a striking resemblance to the trees obtained by sequence comparisons

(Figure 15.16) [35]. Hence, network alignments in general could potentially provide a

new, independent source of biological and phylogenetic information.

The reason for developing methods that rely on topology only for aligning large

biological networks is twofold. While genetic sequences describe a part of biolog-

ical information, so too do biological networks. Sequence and network topology
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have been shown to provide complementary insights into biological knowledge [32].

Sequence alignment algorithms do not use biological information external to sequences

to perform alignments. Analogously, using only topology for network alignment might

be appropriate, since using biological information external to network topology might

hinder the discovery of biological information that is encoded solely in network topol-

ogy. We need to design reliable algorithms for purely topological network alignments

first and then integrate them with other sources of biological information.

DISCUSSION

In this chapter, we reviewed currently available methods for graph-theoretic
analysis and modeling of biological network data. Even though network biology
is still in its infancy, it has already provided insights into biological function,
evolution, and disease. The impact of the field is likely to increase as more
biological network data of high quality becomes available and as better methods
for their analysis are developed. Synergy between biological and computational
scientists is necessary for advancing this nascent research field.

QUESTIONS

(1) Why do we use network properties?
(2) Name network properties and describe how they can be computed.
(3) Name three high-throughput methods for protein–protein interaction detection.
(4) Describe the sources of bias introduced in the protein–protein interaction network data

that were obtained by “pull-down” experiments.
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CHAPTER SIXTEEN

Regulatory network inference

Russell Schwartz

Identifying the complicated patterns of regulatory interactions that control when different
genes are active in a cell is a challenging problem, but one essential to understanding how
organisms function at a systems level. In this chapter, we will examine the role of
computational methods in making such inferences by studying one particularly important
version of this problem: the inference of genetic regulatory networks from gene expression
data. We will first briefly cover some necessary background on the biology of genetic
regulation and technology for measuring the activities of distinct genes in a sample. We will
then work through the process of how one can abstract the biological problem of finding
interactions among genes into a precise mathematical formulation suitable for computational
analysis, starting from very simple variants and gradually working up to models suitable for
analysis of large-scale networks. We will also briefly cover key algorithmic issues in working
with such models. Finally, we will see how one can transition from simplified pedagogical
models to the more detailed, realistic models used in actual research practice. In the process,
we will learn about some key concepts in computer science and machine learning, consider
how computational scientists think about solving a problem, and see why such thinking has
come to play an essential role in the emerging field of systems biology.

1 Introduction

Each cell in a biological organism depends on the coordinated activity of thousands of

different kinds of proteins occurring in potentially millions of variations. To function

properly, the cell must ensure that each of these proteins is present in the specific places
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it is needed, at the proper times, and in the necessary quantities. An exquisitely compli-

cated network of regulatory interactions ensures these conditions are met throughout

the cell’s lifetime. Such regulatory interactions include mechanisms for controlling

when DNA molecules are properly primed to produce RNA, how often RNA molecules

are produced from DNA, how long RNA molecules persist in cells, how often the RNA

molecules give rise to proteins, how the proteins are shuttled about the cell, how they

are chemically modified at any given time, with which other proteins they are associ-

ated, and when they are degraded. These various kinds of regulation are carried out

and interconnected through an array of specialized regulatory proteins.

In a regulatory network inference problem, one seeks to infer these complex sets of

interactions using indirect measurements of the activities of the individual components

of the system. Identifying how genes regulate one another is a fundamental problem in

basic biological research into how organisms function, develop, and evolve. Regulatory

networks also have important practical applications in helping us to interpret large-

scale genomic data and to use them to understand how organisms respond to disease,

potential treatments, and other environmental influences. While we cannot hope to do

justice to such a complicated problem in one chapter, we can look at one special case

of the problem that will illustrate the general principles behind a broad array of work in

the field. We will specifically examine the problem of how one can infer transcriptional

regulatory networks – networks describing regulatory behavior that act by controlling

when RNA is transcribed from DNA – using measurements of RNA expression levels.

The problem of regulatory network inference is interesting not only for its intrinsic

scientific merit but also as a model for several important themes in how modern compu-

tational biology is practiced and how one reasons about computational inferences from

complex biological data sets in general. First, regulatory network inference provides an

example of how computational biology intersects with another major trend in modern

biological research: systems biology. Systems biology arose out of the realization that

one cannot hope to understand the complicated networks of interactions typical of real

biological systems by looking at just one or a few components at a time, as was long

the standard in biological research. Rather, to infer the overall behavior of a system,

researchers must build unified models of the interactions of many components, often

using large, noisy data sets. This sort of inference critically depends on computer sci-

ence methods to enumerate over large numbers of possible models of a given system

and weigh the plausibility of each model given the available data. Such systems-level

thinking increasingly drives research in biology and has vastly increased the need for

computer science expertise in the biological world.

More fundamentally, regulatory network inference is a great example of a problem

in machine learning, a subdiscipline of computer science concerned with inferring

probabilistic models of complex systems from exactly the kinds of large, error-prone
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data sets one increasingly encounters in biological contexts. Machine learning has thus

emerged as one of the key technologies behind modern high-throughput biology. If we

want to understand current directions in computational biology, we need to understand

how a researcher thinks about a machine learning problem and some of the basic ways

he or she poses and solves such a problem.

Furthermore, regulatory network inference is a problem whose solution critically

depends on a careful matching of the class of models one wishes to solve with the

data one has available to solve them. It therefore provides a great case study for

thinking about the general topic of designing mathematical models for problems in the

real world, which is really the beginning of any work in computational biology. The

network inference problem is perhaps unusual among those covered in this text in that

the hardest, and perhaps most interesting, part of solving it is simply formalizing the

problem we wish to solve. This chapter will therefore focus primarily on the issue of

formulating the problem mathematically and less so on the details of how one actually

solves it.

1.1 The biology of transcriptional regulation
Before we can consider computational approaches to regulatory network inference,

we need to know something about the biology of transcriptional regulation. At a

high level, a transcriptional regulatory network can be understood in terms of the

interactions of two elements: transcription factors and transcription factor binding sites.

A transcription factor is a specialized protein that controls when a gene is transcribed to

produce RNA. A transcription factor binding site is a small segment of DNA recognized

by a particular transcription factor. Transcription factor binding sites are usually, but

not exclusively, found near a region called a promoter that occurs near the start of each

gene. A promoter serves to recruit the polymerase complex that will read the DNA

to produce an RNA transcript. When the transcription factor is present, and perhaps

appropriately activated, it will physically bind to its transcription factor binding sites

wherever they are exposed in the DNA. The presence of the transcription factor then

influences how the transcriptional machinery of the cell acts on the corresponding gene.

A given transcription factor can facilitate the recruitment of the polymerase, causing

the target gene to be transcribed at a higher level when the transcription factor is

present, or it can interfere with the recruitment of the polymerase, reducing expression

of the target gene. Furthermore, transcription factors may act in groups, with a specific

gene’s activity level dependent on the levels of several different transcription factors

to different degrees. Figure 16.1 illustrates the concept of transcription factor binding.

Transcription factors are themselves proteins transcribed from genes, and a tran-

scription factor may therefore help to control the expression of another transcription
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Figure 16.1 Illustration of how transcription factors regulate gene expression. A transcription
factor gene (left) produces an mRNA transcript, which in turn produces a protein, TF1, that will
bind to transcription factor binding sites (TFBSs) in the promoter regions of other genes, such
as the target gene G1 (right). The presence of TF1 is here depicted as blocking recruitment of
the RNA polymerase to G1, inhibiting its production of mRNA transcripts.
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Figure 16.2 Example of a small section of a transcriptional regulatory network from
Saccharomyces cerevisiae taken from Guelzim et al. [1], involved in regulating the response of
cell metabolism to stresses such as lack of nutrients. A central “hub” gene, MIG1, responds to
the availability of glucose in the cell. It in turn regulates several other transcription factors,
including SWI5, which helps to control cell division, and CAT8, GAL4, and HAP4, which
regulate various aspects of cell metabolism. SWI5 itself regulates the transcription factors
RME1, which helps control meiosis, and ASH1, which regulates genes involved in more specific
steps of cell division. RME1 regulates the transcription factor IME1, which regulates its own
subset of meiosis-specific genes. Each of these transcription factors regulates various other
downstream targets with more specific functions.

factor or even itself. Transcription factors are typically organized into complicated

networks of transcription factors regulating other transcription factors, which regu-

late others, which regulate others, and so forth, before finally activating modules of

non-regulatory genes to perform various biological functions. Figure 16.2 shows an

example of a small subset of a real regulatory network from the yeast Saccharomyces

cerevisiae [1].

There are many sources of experimental data by which one might infer a regulatory

network and we will primarily confine ourselves to one particular such source of

data: gene expression measurements. To date, most such expression data come from

microarrays. A microarray is a small glass plate covered with thousands or millions

of tiny spots, each made up of many copies of a single short DNA strand called a
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“probe.” When one exposes a purified sample of nucleic acid (DNA or RNA) to a

microarray, pieces of the nucleic acid from the sample will anneal to those spots whose

DNA sequences are complementary to the sample sequences. To use this principle to

quantify RNA in a sample, one will typically convert the RNA into complementary

DNA strands (called cDNAs) through the process of reverse transcription, break the

cDNAs into small pieces, and then fluorescently label the pieces by attaching a small

molecule to each piece of cDNA whose presence one can measure by light emissions.

When the labeled sample is run over the microarray and then washed away, we expect

to find fluorescence only on those spots to which some sample has annealed and

roughly in direct proportion to how much sample has annealed there. We can thus

use these fluorescence intensities to give us a quantitative measure of how much

RNA complementary to each probe was present in the sample. Figure 16.3 shows

an example of a microarray. A typical expression microarray may have a few probes

each for every known gene in a given organism’s genome, as well as potentially

others to detect non-coding genes and other non-genic sources of transcribed RNA.

For our purposes, we will simplify a bit and assume that a microarray gives us a

measure of how much RNA from each gene is present, or expressed, in a given

sample.

In a typical microarray experiment, one will use several copies of a given microarray

and apply them to a collection of samples gathered under different conditions. These

conditions may correspond to different time points, different individuals from whom

a tissue sample has been taken, different nutrients or drugs that have been applied to

samples, or any other sort of variation that might be expected to change the activities of

genes. The data from each gene across all samples are commonly normalized relative

to some control sample (typically a pooled mixture of all conditions), giving a measure

of the expression level of that gene in each condition relative to the control. Thus, we

can think of an array as providing us with a matrix of relative expression data, in which

we have one column of data for each condition and one row for each gene. We will

assume that this matrix of gene expression measurements represents the data from

which we wish to infer the regulatory network.

The preceding description of the problem and the data available to solve it omits

many details, as one always must in posing a computational problem, but it provides a

reasonable beginning for formulating a mathematical model of the network inference

problem. In the remainder of this chapter, we will survey the basic ideas behind how

one can go from gene expression measurements to inferred regulatory networks. We

will seek to build an intuition for the problem by starting with a simple variant and

gradually moving toward a realistic model of the problem in practice. We will conclude

with some discussion of the further complications that come up in real-world systems

and how the interested reader can learn more about these topics.
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Figure 16.3 A microarray slide showing relative levels of nucleic acid in two samples that
are complementary to a set of probes [2]. The two samples are labeled in red and green,
producing yellow spots when the samples show similar expression levels and red or green
spots when one sample shows substantially different expression than the other.

2 Developing a formal model for regulatory network
inference

2.1 Abstracting the problem statement
If we want to develop a computational method for the regulatory network inference

problem, we need to begin by developing an abstraction of the problem, i.e. a formal

mathematical description of what we will consider the inputs and outputs of the problem

to be. Abstracting a problem requires precisely defining what data we assume we have

available to us and how we will represent those data, as well as what an answer to
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C1 C2 C3 C4 C5 C6 C7 C8
G1 1 1 0 0 1 1 1 0
G2 0 1 0 1 1 1 1 0
G3 0 0 1 0 0 0 0 1
G4 0 0 0 0 0 1 0 1

Figure 16.4 A toy example of a discretized gene expression data set describing the activities
of four genes (G1–G4) in eight conditions (C1–C8). Each row of the matrix (running left to
right) describes the activity of one gene under all conditions and each column (running top to
bottom) describes the activity of all genes under one condition.
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Figure 16.5 A set of possible networks for the expression data of Figure 16.4.

the problem will look like and how we will choose among possible answers. To help

us develop an intuition for posing such a problem, we will start with a very simple

abstraction of transcriptional regulatory network inference.

We will first develop an abstraction of the input data. We can begin by assuming that

the only data we have available to us are a set of microarray measurements comprising

a matrix in which each element describes the expression level of one gene in one

condition. To keep things simple for the moment, we will further assume that each

data point takes on one of two possible values: “1” if the gene is expressed at a

higher than average level (informally, that the gene is “on” or “active”) and “0” if the

gene is expressed at a lower than average level (informally, that the gene is “off” or

“inactive”). We are thus making the decision for this level of abstraction to discard

the true continuous (real-valued) data that would be produced by the microarray in

order to derive a more conceptually tractable model. Figure 16.4 shows a hypothetical

example of such an input data set for four genes in eight conditions.

We must also define some formalized statement of the output of a network inference

algorithm. In a generic sense, our output should be a model of a network identifying

pairs of genes that appear to regulate one another. In this simple version of the problem,

we will pick a binary output as well: for any ordered pair of genes, G1 and G2, we

will say that either G1 regulates G2 or G1 does not regulate G2. We can represent the

output of the inference problem by the set of ordered pairs of genes corresponding

to regulatory relationships. This representation of the output can be visualized as a

network, also called a graph, consisting of a set of vertices with pairs of vertices (or

nodes) joined by edges. Here, we create one node for each gene and place a directed
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edge between any pair of genes Gi and G j for which Gi regulates G j . Figure 16.5

shows a few examples of possible networks for the data of Figure 16.4 according to

this particular representation of the model.

In choosing this particular representation, we are again making some assumptions

about what we will and will not consider important in a model. We are choosing to use

a model that represents directionality of regulation; “G1 regulates G2” means some-

thing different in our model than “G2 regulates G1.” A regulatory network inference

algorithm need not distinguish between those possibilities. On the other hand, we are

choosing to ignore the fact that regulation can be positive (activation) or negative

(repression). We could alternatively have chosen to maintain a sign on each regulatory

relationship to distinguish these possibilities, as is typically done in network models.

We are similarly ignoring the fact that regulatory relationships could have different

strengths (G1 might regulate G2 strongly or weakly), something that is certainly true

and which one might denote by placing a numerical weight on each edge. Regulatory

relationships could in fact be described by essentially arbitrary functions of expression.

We will also assume that genes cannot self-regulate and that we do not have directed

cycles, which are paths in the network that lead from a gene back to itself. These

assumptions are not, in fact, accurate, but help us establish a more conceptually simple

model. Making such trade-offs, in a way that is appropriate to the data available to us

and the uses to which we want to put them, is one of the hardest but most important

issues in developing a formal model. Our goal in developing the present model is to

help us understand the inference problem and so we favor a relatively simple model,

but we might favor a very different model if we had some other goal in mind.

The two formalizations defined in this section – a formal representation of the input

to the problem and a formal representation of the output to the problem – are two of

the main ingredients in a formal problem statement. There is a third component we

will need, though: a formal specification of how we will judge any given output for a

given input. This measure of the quality of a possible output, known as an objective

function, is not so easy to define for a complicated problem like this. We will spend

the next few subsections showing how to define a precise objective function for the

regulatory network inference problem, starting with some intuition behind the problem

and building up to a general formulation.

2.2 An intuition for network inference
A good starting point for an objective function is to consider informally how we can

reason about the evidence available to us to develop a plausible model.1 We can see

1 The terminology here may be confusing to readers previously familiar with mathematical modeling, as the
term “model” has a different meaning in the mathematical modeling community than it does in the machine
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at an intuitive level how one might evaluate possible regulatory networks for a given

data set by closely examining the data of Figure 16.4. We can observe that genes G1

and G2 are generally, although not always, active and inactive in the same conditions.

We might therefore guess that G1 regulates G2, and specifically that G1 activates G2.

G1 and G3 are generally active in opposite conditions. This, too, might be seen as

evidence of regulation, in this case perhaps that G1 represses G3. G4’s activity appears

unrelated to that of G1, G2, or G3 and we might therefore conclude that it is probably

not in a regulatory relationship with any of them. We therefore might conjecture that

Figure 16.5a provides a good model of the regulatory network we want to infer.

Intuition can only take us so far, though. The same reasoning that led us to the

network of Figure 16.5a could just as easily lead us to Figure 16.5b or Figure 16.5c. For

that matter, we do not know if the correlations we think we see in the data are sufficiently

well supported by the data that we should believe them. Perhaps Figure 16.5d (no

regulation) is the true network and the apparent correlations arose from random chance.

If we want to be able to choose among these possibilities, we will need to be a bit more

precise about how we we will decide what makes for a “plausible” model.

2.3 Formalizing the intuition for an inference objective function
To go from intuition to a formal computational problem, we will need to come up with

a way of specifying precisely how good one model is relative to another. A common

way of accomplishing this for noisy data inference problems is to define the problem

in terms of probabilities. We will use a particular variant of a probabilistic model,

known as a likelihood model, in which we judge a model by how probable we think it

is that the observed data could have been generated from that model. This probability

is known as the likelihood of the model. We then seek the model that gives us the

greatest likelihood, known as the maximum likelihood model.

To put the intuitive problem into a formal framework, we first need to develop some

notation. As in Figure 16.4, we will assume our input is a matrix, which we will call

D. We will refer to each row of the matrix, corresponding to a single gene, as a vector

di . So for example, the row for gene G1 is represented by the vector d1 = [11001110].

Each element of each row is represented by a single scalar (non-vector) value di j . For

example, the expression of gene G1 in condition C2 is given by d12 = 1.

We will also need a notation to refer to our output, i.e. the regulatory network we

would like to infer. As discussed in the preceding section, our output can be represented

learning community. We will follow machine learning practice in using “model” to refer to a particular output
of the network inference problem, i.e. a network modeling the regulatory interactions among the input genes.
In mathematical modeling terminology, a “model” of the problem would refer instead to what we have here
called the “formal problem statement.”
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by a graph, which we can call G. Any given G is itself defined by a set of vertices V ,

with one vertex per gene, and a set of edges E , with potentially one edge for each pair

of genes. Thus, for example, we can refer to the model of Figure 16.5a by the graph

G = (V, E) = ({v1, v2, v3, v4}, {(v1, v2), (v1, v3)}). (16.1)

The vertex set contains four vertices, one for each of the four genes, and the edge set

contains two edges, one for each of the two posited regulatory relationships.

We will be working specifically with probability models, which will require that

our models include some additional information to let us determine how likely the

model is to produce a given set of expression data. We will defer the details of these

probabilities for the moment and just declare that we have some additional set P of

probability parameters contained in the model. For a maximum likelihood model, we

define those additional values contained in P to be whatever will make the likelihood

function as large as possible. The exact contents of P will depend on the graph elements

V and E , as we will see shortly. For our formal purposes, then, an output model M

consists of the elements (V, E, P) defining the proposed regulatory relationships and

the probability of outputting any given expression matrix D from that model M . This

probability, called the likelihood of the model, is denoted by the probability function

Pr{D|M}, read as “the probability of D given M .” Our goal will be to find

max
M

Pr{D|M},

i.e. the maximum likelihood model over all possible models M for a given data set D.

We still have more work to do, though, to define precisely what it means mathematically

to find the M maximizing Pr{D|M}.

2.3.1 Maximum likelihood for one gene
We next need to specify how one actually evaluates the function Pr{D|M} for a

known D and M . We can start by considering just one gene, G1, whose expression

is described by the vector d1 = [11001110]. Since we are now assuming that there is

only one gene, we cannot have any regulatory relationships. Therefore, we have only

one possible graph G for our model: G = (V, E) = ({v1}, {}), a vertex set of one node

and an empty edge set. To determine the likelihood of the model, we will need to

evaluate Pr{d1|(V, E, P)}, the probability that the model M = (V, E, P) would lead

to the output vector d1. It is a universal law of probability that the probability of a pair

of independent outcomes is the product of the probabilities of the individual outcomes.

Therefore, if we assume that each condition represents an independent experiment then

the probability of outputting the complete vector d1 will be given by the product of

probabilities of outputting each element of that vector. Thus, if we knew the probability
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that G1 was active in a given condition given our model M (Pr{d1i = 1|M}, which we

will call p1,1) and the probability that G1 was inactive in a given condition given model

M (Pr{d1i = 0|M}, which we will call p1,0) then we could determine the probability

of the whole vector as follows:

Pr{d1 = [11001110]|M} = Pr{d11 = 1|M} × Pr{d12 = 1|M} × Pr{d13 = 0|M}
× Pr{d14 = 0|M} × Pr{d15 = 1|M} × Pr{d16 = 1|M}
× Pr{d17 = 1|M} × Pr{d18 = 0|M}

= p1,1 × p1,1 × p1,0 × p1,0 × p1,1 × p1,1 × p1,1 × p1,0. (16.2)

For this particular model, p1,1 and p1,0 are precisely the additional model parameters

P that we need to know to finish formally specifying the model.

As noted above, those additional values contained in P must be whatever will make

the likelihood function as large as possible. Fortunately, those maximum likelihood

values are easy to determine, at least for this model. The values that will give the

maximum likelihood are given by the fractions of observations corresponding to each

given probability in the observed data. In other words, we observe that G1 is active in

five conditions out of eight, giving a maximum likelihood estimate of p1,1 = 5/8. G1

is inactive in three conditions out of eight, giving a maximum likelihood estimate of

p1,0 = 3/8. This procedure for learning optimal parameters of P then lets us complete

the formal specification of our model M as follows:

M = (V, E, P) =
(

{v1}, {},
{

Pr{d1i = 1|M} = 5

8
, Pr{d1i = 0|M} = 3

8

})
. (16.3)

We also now have all the tools we need to come up with a precise quantitative statement

of the likelihood of the data given the model for this simple one-gene case:

Pr{d1 = [11001110]|M} = p1,1 × p1,1 × p1,0 × p1,0 × p1,1 × p1,1 × p1,1 × p1,0

= 5

8
× 5

8
× 3

8
× 3

8
× 5

8
× 5

8
× 5

8
× 3

8
≈ 0.00503. (16.4)

This number is not too useful to us when we only have one model to consider, but will

become our measure for evaluating possible models with more complicated examples.

2.3.2 Maximum likelihood for two genes
Now that we know how to evaluate a likelihood function for one gene, we will move

on to considering two genes, G1 and G2, simultaneously. There are now three possible

hypotheses we can consider: neither G1 nor G2 regulates the other, G1 regulates G2,

or G2 regulates G1. Each of these hypotheses can be converted into a formal model



326 Part IV Regulatory Networks

using the concepts laid out above. We will want to determine which of these three

models maximizes the likelihood of both genes given the model:

max
M

Pr{d1 = [11001110], d2 = [01011110]|M}. (16.5)

To keep the notation from getting too cumbersome, we will henceforth abbreviate the

above likelihood as Pr{d1, d2|M}.
Our first model, which we will call M1, assumes that neither G1 nor G2 regulates

the other. Formally, M1 = (V1, E1, P1) = ({v1, v2}, {}, P1), where we will again defer

defining P1 precisely until we see how we will use it. For this model, we can treat the

outputs d1 and d2 as independent sets of data since we assume neither gene regulates

the other. As we noted above, the assumption that two variables are independent means

that we can derive their joint probability by multiplying their individual probabilities:

Pr{d1, d2|M1} = Pr{d1|M1} × Pr{d2|M1}. (16.6)

We can then evaluate each of these two probabilities exactly as we did in the one-

gene case. The additional probability parameters P1 that we will need to know are

the probability G1 is active or inactive independently of G2 and the probability G2

is active or inactive independently of G1. Extending our notation from the one-gene

case, P1 = {p1,1, p1,0, p2,1, p2,0}. We can derive maximum likelihood estimates for

these probabilities as above by observing the fraction of outputs that are 1 or 0 for each

gene. As before, we can estimate p1,1 = 5/8 and p1,0 = 3/8. We similarly observe

five 1s and three 0s for G2, so we estimate p2,1 = 5/8 and p2,0 = 3/8. We then get the

following estimate for the likelihood of G1’s outputs:

Pr{d1|M1} = p1,1 × p1,1 × p1,0 × p1,0 × p1,1 × p1,1 × p1,1 × p1,0

= 5

8
× 5

8
× 3

8
× 3

8
× 5

8
× 5

8
× 5

8
× 3

8
≈ 0.00503, (16.7)

and the following for G2’s outputs:

Pr{d2|M1} = p2,0 × p2,1 × p2,0 × p2,1 × p2,1 × p2,1 × p2,1 × p2,0

= 3

8
× 5

8
× 3

8
× 5

8
× 5

8
× 5

8
× 5

8
× 3

8
≈ 0.00503. (16.8)

Thus,

Pr{d1, d2|M1} =
(

5

8

)5

×
(

3

8

)3

×
(

5

8

)5

×
(

3

8

)3

≈ 2.53 × 10−5. (16.9)

Things get trickier when we move to a model assuming some regulation. We will now

consider the possibility that G1 regulates G2. For this model, M2 = (V2, E2, P2) =
({v1, v2}, {(v1, v2)}, P2). That is, the model assumes a single regulatory edge running



16 Regulatory network inference 327

from v1 to v2 representing the assumption that G2’s expression is a function of G1’s

expression. As before, we can assume G1’s expression is an independent random

variable:

Pr{d1|M2} = p1,1 × p1,1 × p1,0 × p1,0 × p1,1 × p1,1 × p1,1 × p1,0

= 5

8
× 5

8
× 3

8
× 3

8
× 5

8
× 5

8
× 5

8
× 3

8
≈ 0.00503. (16.10)

We must, however, assume that G2’s expression depends on G1’s. More formally, our

likelihood function will need a term of the form Pr{d2|M2, d1}, which we read as “the

probability of d2 given M2 and d1.” This function will depend on a model of how likely

it is that d2i is 1 when d1i is 1 as well as how likely it is that d2i is 1 when d1i is 0. We

will therefore need to specify four probability parameters:

� p2,0,0: the probability d2i = 0 when d1i = 0
� p2,0,1: the probability d2i = 0 when d1i = 1
� p2,1,0: the probability d2i = 1 when d1i = 0
� p2,1,1: the probability d2i = 1 when d1i = 1

P2 is defined by the probabilities we need to evaluate Pr{d1|M2} and those we need

to evaluate Pr{d2|M2, d1}, so P2 = {p1,1, p1,0, p2,0,0, p2,0,1, p2,1,0, p2,1,1}. As before,

we can derive maximum likelihood estimates of these parameters by counting the

fraction of times we observe each value of G2 for each value of G1. We have five

instances in which G1 is 1 and four of these five also have G2 = 1. Thus, p2,1,1 = 4/5

and p2,0,1 = 1/5. Similarly, we have three instances in which G1 = 0 and two of these

three have G2 = 0. Thus, p2,0,0 = 2/3 and p2,1,0 = 1/3. Therefore,

Pr{d2|M2, d1} = p2,0,1 × p2,1,1 × p2,0,0 × p2,1,0 × p2,1,1 × p2,1,1 × p2,1,1 × p2,0,0

= 1

5
× 2

3
× 1

3
× 4

5
× 4

5
× 4

5
× 4

5
× 2

3
≈ 0.0121. (16.11)

The complete likelihood for this model is then given by

Pr{d1, d2|M2} = Pr{d1|M2}Pr{d2|d1, M2} ≈ 0.00503 × 0.0121 ≈ 6.10 × 10−5.

We can therefore conclude that M2 is a more likely explanation for the data than M1.

Evaluating the final model for two genes, M3 = (V3, E3, P3) = ({v1, v2},
{(v2, v1)}, P3), proceeds analogously to the evaluation of M2:

Pr{d1, d2|M2} = Pr{d2|M3}Pr{d1|d2, M2}, (16.12)

i.e. the model is the product of a term accounting for the independent likelihood of G2

and the likelihood of G1 given that it is a function of G2. We can evaluate Pr{d2|M3}
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as we did for M1:

Pr{d2|M3} = p2,0 × p2,1 × p2,0 × p2,1 × p2,1 × p2,1 × p2,1 × p2,0

= 3

8
× 5

8
× 3

8
× 5

8
× 5

8
× 5

8
× 5

8
× 3

8
≈ 0.00503. (16.13)

We can also evaluate Pr{d1|d2, M3} as we did for Pr{d2|d1, M2}. We define a new set

of parameters:

� p1,0,0: the probability d1i = 0 when d2i = 0
� p1,0,1: the probability d1i = 0 when d2i = 1
� p1,1,0: the probability d1i = 1 when d2i = 0
� p1,1,1: the probability d1i = 1 when d2i = 1

We estimate the parameters by identifying all occurrences of G2 = 0 and

G2 = 1 and, for each, counting how often G1 = 0 and G1 = 1: p1,0,0 = 1/3,

p1,1,0 = 2/3, p1,0,1 = 4/5, p1,1,1 = 1/5. These probabilities collectively define P3 =
{p2,1, p2,0, p1,0,0, p1,0,1, p1,1,0, p1,1,1}. Then,

Pr{d2|M3, d1} = p1,1,0 × p1,1,1 × p1,0,0 × p1,0,1 × p1,1,1 × p1,1,1 × p1,1,1 × p1,0,0

= 1

5
× 2

3
× 1

3
× 4

5
× 4

5
× 4

5
× 4

5
× 2

3
≈ 0.0121. (16.14)

Putting it all together gives us the full model likelihood

Pr{d1, d2|M2} ≈ 0.00503 × 0.0121 ≈ 6.10 × 10−5. (16.15)

Thus, M3 has the same likelihood as M2.

If we had just the two genes to consider then we could run through these possibilities

and come to the final conclusion that M1 is a poorer model of the data, while M2 and

M3 are better models than M1 and equally good to one another.

It is worth noting that it is not a coincidence that M2 and M3 yield identical

likelihoods. In fact, the problem as we posed it guarantees that the likelihood of any

model will be identical to that of a mirror image model, in which the directionality

of all edges is reversed. We might therefore conclude that our formalization of the

problem was, in this respect, poorly matched to our data and that we should have

posed the problem in terms of finding undirected networks. Alternatively, we might

consider ways of adding additional information by which we might disambiguate the

directions of regulatory edges, a topic we will consider later in the chapter. For now,

however, we will ignore this issue and continue working through the problem as we have

formalized it.
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2.3.3 From two genes to several genes
The mathematics became fairly complicated when we moved from one to two genes,

so one might expect that moving to three or four will be much harder. In fact, though,

it is not much more difficult to reason about four genes, or forty thousand, than it is to

reason about two. The number of models one can potentially consider goes up rapidly

with increasing numbers of genes, but evaluating the likelihood of any given model is

not that much harder conceptually. To see why, let us consider just three of the possible

models of all four genes from Figure 16.4.

One model we might wish to consider is that no gene regulates any other. We can

call this model M ′
1, which would correspond to the assumption that

Pr{d1, d2, d3, d4|M ′
1} = Pr{d1|M ′

1} × Pr{d2|M ′
1} × Pr{d3|M ′

1} × Pr{d4|M ′
1}.
(16.16)

We can evaluate each of these terms just as we did when we considered two genes.

For example, to evaluate Pr{d1|M ′
1}, we define variables p1,0 and p1,1 representing

the probabilities G1 is 0 or 1, estimate these probabilities by counting the fraction of

occurrences of G1 = 0 and G1 = 1, and multiply probabilities across conditions:

Pr{d1|M ′
1} = p1,1 × p1,1 × p1,0 × p1,0 × p1,1 × p1,1 × p1,1 × p1,0

= 5

8
× 5

8
× 3

8
× 3

8
× 5

8
× 5

8
× 5

8
× 3

8
≈ 0.00503. (16.17)

Similarly,

Pr{d2|M ′
1} = p2,0 × p2,1 × p2,0 × p2,1 × p2,1 × p2,1 × p2,1 × p2,0

= 3

8
× 5

8
× 3

8
× 5

8
× 5

8
× 5

8
× 5

8
× 3

8
≈ 0.00503,

Pr{d3|M ′
1} = p3,0 × p3,0 × p3,1 × p3,0 × p3,0 × p3,0 × p3,0 × p3,1 (16.18)

= 6

8
× 6

8
× 2

8
× 6

8
× 6

8
× 6

8
× 6

8
× 2

8
≈ 0.0111,

Pr{d4|M ′
1} = p4,0 × p4,0 × p4,0 × p4,0 × p4,0 × p4,1 × p4,0 × p4,1

= 6

8
× 6

8
× 6

8
× 6

8
× 6

8
× 2

8
× 6

8
× 2

8
≈ 0.0111.

The formal statement of the model is, then,

M ′
1 = (V ′

1, E ′
1, P ′

1) = ({v1, v2, v3, v4}, {}, {p1,0, p1,1, p2,0, p2,1, p3,0, p3,1, p4,0, p4,1})
(16.19)
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and the likelihood of the whole model is

Pr{d1, d2, d3, d4|M ′
1} ≈ 0.00503 × 0.00503 × 0.0111 × 0.0111 ≈ 3.00 × 10−9.

(16.20)

We might alternatively consider a model M ′
2 in which G1 regulates G2, G2 regulates

G3, and nothing regulates G1 or G4. M ′
2 corresponds to the assumption that

Pr{d1, d2, d3, d4|M ′
2}= Pr{d1|M ′

2}×Pr{d2|d1, M ′
2}×Pr{d3|d2, M ′

2}×Pr{d4|M ′
2}.

(16.21)

The G1 and G4 terms can be evaluated just as with model M ′
1:

Pr{d1|M ′
2} = p1,1 × p1,1 × p1,0 × p1,0 × p1,1 × p1,1 × p1,1 × p1,0

= 5

8
× 5

8
× 3

8
× 3

8
× 5

8
× 5

8
× 5

8
× 3

8
≈ 0.00503, (16.22)

Pr{d4|M ′
2} = p4,0 × p4,0 × p4,0 × p4,0 × p4,0 × p4,1 × p4,0 × p4,1

= 6

8
× 6

8
× 6

8
× 6

8
× 6

8
× 2

8
× 6

8
× 2

8
≈ 0.0111.

The G2 term can be handled just as when we considered G1 and G2 alone:

Pr{d2|M ′
2, d1} = p2,0,1 × p2,1,1 × p2,0,0 × p2,1,0 × p2,1,1 × p2,1,1 × p2,1,1 × p2,0,0

= 1

5
× 2

3
× 1

3
× 4

5
× 4

5
× 4

5
× 4

5
× 2

3
≈ 0.0121. (16.23)

Finally, the G3 term can be handled analogously to the G2 term:

Pr{d3|d2, M ′
2} = p3,0,0 × p3,0,1 × p3,1,0 × p3,0,1 × p3,0,1 × p3,0,1 × p3,0,1 × p3,1,0

= 1

3
× 5

5
× 2

3
× 5

5
× 5

5
× 5

5
× 5

5
× 2

3
≈ 0.148. (16.24)

We thus get the complete likelihood:

Pr{d1, d2, d3, d4|M ′
2} = 0.00503 × 0.0121 × 0.148 × 0.0111 ≈ 1.00 × 10−7.

(16.25)

We can therefore conclude that M ′
2 has a substantially higher likelihood than M ′

1.

We can also consider models in which a given gene is a function of more than one

regulator. For example, suppose we consider a model M ′
3 in which G1, G2, and G4 are

unregulated but G3 is regulated by both G1 and G2. For this model, we assume that

Pr{d1, d2, d3, d4|M ′
3}= Pr{d1|M ′

3}×Pr{d2|M ′
3}×Pr{d3|d1, d2, M ′

3}×Pr{d4|M ′
3}.

(16.26)
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We can evaluate the G1, G2, and G4 terms exactly as with model M ′
1 above:

Pr{d1|M ′
3} = p1,1 × p1,1 × p1,0 × p1,0 × p1,1 × p1,1 × p1,1 × p1,0 ≈ 0.00503.

(16.27)

Similarly,

Pr{d2|M ′
3} = p2,0 × p2,1 × p2,0 × p2,1 × p2,1 × p2,1 × p2,1 × p2,0 ≈ 0.00503,

Pr{d4|M ′
3} = p4,0 × p4,0 × p4,0 × p4,0 × p4,0 × p4,1 × p4,0 × p4,1 ≈ 0.0111.

(16.28)

To evaluate the G3 term, however, we will need to consider its dependence on states of

both G1 and G2. We can capture this dependence with the following set of probability

parameters:

� p3,0,0,0: the probability d3i = 0 when d1i = 0 and d2i = 0
� p3,1,0,0: the probability d3i = 1 when d1i = 0 and d2i = 0
� p3,0,0,1: the probability d3i = 0 when d1i = 0 and d2i = 1
� p3,1,0,1: the probability d3i = 1 when d1i = 0 and d2i = 1
� p3,0,1,0: the probability d3i = 0 when d1i = 1 and d2i = 0
� . . .

We can then say

Pr{d3|d1, d2, M ′
3} = p3,0,1,0 × p3,0,1,1 × p3,1,0,0 × p3,0,0,1 × p3,0,1,1 × p3,0,1,1

× p3,0,1,1 × p3,1,0,0. (16.29)

To estimate the probability parameters, we need to count values of G3 for each com-

bination of values of G1 and G2. For example, to evaluate p3,0,1,1 (the probability G3

=0 given that G1 =1 and G2 =1), we note that there are four conditions in which G1

=1 and G2 =1 and all four have G3 = 0. Thus, p3,0,1,1 = 4/4. Similarly, we estimate

p3,0,1,0 = 1/1 and p3,1,0,0 = 2/2. We would then conclude that

Pr{d3|d1, d2, M ′
3} = 1

1
× 4

4
× 2

2
× 1

1
× 4

4
× 4

4
× 4

4
× 2

2
= 1. (16.30)

Putting together all of the terms, we get

Pr{d1, d2, d3, d4|M ′
3} ≈ 0.00503 × 0.00503 × 1 × 0.0111 ≈ 2.81 × 10−7. (16.31)

Thus, this new model M ′
3 has the highest likelihood of the three we have considered.

We could repeat the analysis above for every possible model of the four genes G1–G4

and thereby find the maximum likelihood model.
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2.4 Generalizing to arbitrary numbers of genes
The above examples cover essentially all of the complications we would encounter in

evaluating the likelihood of any network model for these genes or any set of genes for

the present level of abstraction. In particular, if we understand the three examples in

the preceding section, we understand all of the concepts we need to evaluate networks

of arbitrary complexity, at least at a simple level of abstraction. We will now see how

to complete the generalization to arbitrary numbers of genes.

Suppose now that instead of four genes assayed in eight conditions, we have n genes

assayed in m conditions. We can then represent our input matrix D as the set of vectors

d1, . . . , dn , each of length m. Any given model M will still have the form (V, E, P),

where V = {v1, . . . , vn} now contains one element for each of the n genes and E ⊂
V × V , i.e. the set of edges is a subset of the set of pairs of genes. (In reality, E will gen-

erally be much smaller than V × V due to the restriction that the graph does not contain

directed cycles.) Defining P is a bit more complicated, as we require one probability

parameter for each gene, each possible expression level of that gene, and each possible

expression level of each of its regulators. More formally, for any given gene i regulated

by a set of genes Ri = { j |(v j , vi ) ∈ E} (read as “the set of values j such that (v j , vi )

is in set E”) of size mi = |Ri | (the number of elements in set Ri ), we require a model

variable pi,bi ,bi1,...,bimi
for each bi , bi1, . . . , bimi ∈ {0, 1}. This results in a set of 2mi +1

parameters in P for gene i defining the probability of each possible state of gene i given

each possible state of the genes that regulate it. Collectively, these sets pi,bi ,bi1,...,bimi

over all genes i define the probability parameter set P . We can find the maximum like-

lihood estimate for each such parameter pi,bi ,bi1,...,bimi
, just as we did in the previous

cases, by finding the observations in which genes i1, . . . , imi have values bi1, . . . , bimi

and determining the fraction of those observations for which gene i has value bi .

Evaluating the probability of an input matrix D given any particular model

M = (V, E, P) then follows analogously to the derivations for fixed n in the

preceding sections. We can evaluate the likelihood of any particular expres-

sion vector di given the model M and the remaining expression matrix D/di =
[d1, d2, . . . , di−1, di+1, . . . , dn] (i.e. the portion of D remaining when we remove

di ) by taking the product over the probabilities of the observed output values:

Pr{di |D/di , M} =
m∏

j=1

pi,di j ,dri1, j ,...,drimi
, j (16.32)

where the indices ri1, . . . , rimi come from the set Ri of inputs to gene i . While the

notation gets complicated, intuitively this product simply expresses the idea that we

can evaluate the probability of the gene’s observed output vector by multiplying inde-

pendent contributions from each condition.
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Similarly, we can accumulate the likelihood function across all output genes i to get

the full likelihood of input data D given model M :

Pr{D|M} =
n∏

i=1

Pr{di |D/di , M} =
n∏

i=1

m∏
j=1

pi,di j ,dri1, j ,...,drimi
, j (16.33)

where the rik values are again drawn from the set Ri . While the notation is again

complex, the concept is simple. We can evaluate the probability of the entire data set

by accumulating a product across all data points, evaluating each data point by the

conditional probability of its observed value given the observed values of all of its

input genes. Manually evaluating the likelihood of such a model for more than a few

variables would be tedious but it is easily handled by a computer program.

3 Finding the best model

The astute reader might notice that we have not yet mentioned any algorithms in this

chapter. We know how to compare different models, but we may have a very large

number of possible models to consider. Finding the best of all possible models will

therefore require a more sophisticated approach than simply evaluating the likelihood

for every possibility and picking the best one. Finding the best of all possible models

is an example of a machine learning problem. Machine learning problems like this are

very different from standard discrete algorithm problems in that we do not generally

have a library of problem-specific algorithms with definite run times from which

to draw. Rather, there are a host of generic learning methods that work broadly for

problems posed with this sort of probabilistic model. Solving a machine learning

problem often involves selecting some such generic algorithm and then tuning it to

work especially well given the details of the particular inference being conducted.

Actually solving real-world versions of the regulatory network inference problem is

not trivial and requires expertise in statistics and machine learning beyond what we

assume for readers of this text. In this section, though, we will very briefly consider

some general strategies we can use to find a reasonable solution in practice.

For relatively small data sets, a variety of simple solutions are available. For the

simplest instances of such a problem, one can try a brute-force search of all possible

solutions. The four-gene example we considered, for instance, has a few thousand

possible models and we could run through all of them in a reasonable time, evaluating

the likelihood of each and finding the global maximum likelihood model. We could

extend that brute-force approach to perhaps five or six genes, but not much farther. One

alternative for larger networks is to use a heuristic, which is a method that provides
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no guarantees of good performance but tends to give at least a pretty good answer in

a reasonable amount of time in practice. One such heuristic strategy is hill-climbing.

With a hill-climbing heuristic, we start with an initial guess as to the network (perhaps

assuming no regulation or using a best guess derived from the literature) and then pick

a random potential edge to examine. If that edge is present in the network, we remove

it, and if it is not present, we add it. We then evaluate the likelihoods of both the original

and the modified networks; whichever network has a higher score is retained. (Note

that if we wish to keep the restriction that the network has no cycles then we must test

for cycles after each proposed change and assign likelihood zero to any network that

has a cycle.) This process continues until we find a network whose likelihood cannot

be improved by adding or removing any single edge. Many other generic optimization

heuristics like hill-climbing can also be adapted to this problem.

There are also various heuristics specific to the network inference problem. For

example, the guilt-by-association (GBA) method [3] suggests that we shrink the uni-

verse of possible models by only allowing edges between genes when there is a

strong correlation between those genes’ expression vectors. This improvement greatly

reduces the search space of possible models and allows us to extend other optimization

heuristics to much larger gene sets.

For more challenging data sets, a standard approach is to use a Markov chain Monte

Carlo method, which is essentially a randomized version of the hill-climbing approach.

The most widely used such method is the Metropolis–Hastings algorithm [4]. With a

Metropolis–Hastings approach to the network inference problem, we can begin just

as with hill–climbing, choosing a random edge and creating a version of the model

in which that one edge is added if it was not present or removed if it was present.

We then again evaluate the likelihood of the model in the original form, which we

will call L1, and in the modified form, which we will call L2. If L2 > L1 then we

make the change, just as with hill-climbing. If, however, L2 < L1, we still allow

some chance of making the change, with probability L2/L1. While this may seem

like a minor difference, it actually makes for a far more useful algorithm. We can

use this Metropolis–Hastings approach to explore possible models and pick the best,

but it also gives us quite a bit of useful information about distributions of models

that we can use to assess confidence in the model chosen or specific features of that

model. A similar alternative to Metropolis–Hastings is Gibbs sampling [5], which

uses essentially the same algorithm for this problem except that on each step one

either keeps the modified model with probability L2/(L1 + L2) or the original model

with probability L1/(L1 + L2). There is an enormous literature on more sophisticated

variants on Markov chain Monte Carlo methods and such methods are often effective

for quite difficult problem instances.

For the most difficult data sets, we are likely to need more advanced methods than

we can reasonably cover in this text. There is now a large literature on optimization
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methods for machine learning to which one can refer for solving the hardest problems.

Some references to this literature are provided in the concluding section below.

4 Extending the model with prior knowledge

We have now seen a very basic version of how to evaluate possible models of a

regulation of a genetic regulatory network, but what we have seen so far is still not

likely to lead to accurate inferences from real data. There are simply too many possible

models and too little data from which to learn them to hope that such a naı̈ve approach

will work well. If we want a genuinely useful method, the most important missing

piece to our initial approach is some way of using what is already known or suspected

about the system to constrain our inferences. This sort of external knowledge about a

problem is generally encoded in a prior probability, also known simply as a prior. A

prior probability is an estimate of how plausible we believe a variable or parameter of

the model is independent of the data from which we are formally learning the model.

It gives us a way to incorporate into our analysis whatever we know, or think we know,

about the system being modeled.

To see how one can use a prior probability, let us suppose we already have a general

idea of what the network we are inferring looks like. Perhaps we have referred to prior

literature on the genes of interest to us and seen several papers reporting that G1 regu-

lates G2 and a single paper reporting that G2 regulates G3. We might, on that basis, have

some prior expectation that our model should include those regulatory relationships.

Perhaps we decide that we are 90% confident that G1 regulates G2 and 50% confident

that G2 regulates G3. We might also have some prior expectation that our network

should be sparse, i.e. that most edges for which there is no literature support should not

be present. We might then decide on a generic confidence of 10% that any other given

regulatory relationship not mentioned in the literature is present. A prior probability

gives us a rigorous way of building these estimates into our inferences. For example,

let us consider model M ′
1 from Section 2.3 with the following likelihood function:

Pr{d1, d2, d3, d4|M ′
1} = Pr{d1|M ′

1} × Pr{d2|M ′
1} × Pr{d3|M ′

1} × Pr{d4|M ′
1}.
(16.34)

We can incorporate our prior expectations into the network inference problem by

changing our objective function from the above likelihood to the probability

Pr{d1, d2, d3, d4|M ′
1} × Pr{M ′

1},
where Pr{M ′

1} is a probability function over possible models that provides an estimate

of how intrinsically plausible we believe each model to be independent of the data. To
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evaluate that prior probability, we need to consider each edge that might be present in

M ′
1. If we define e to mean the event that edge e is not present in the model, then

Pr{M ′
1}= Pr{(v1, v2)}×Pr{(v1, v3)}×Pr{(v1, v4)}×Pr{(v2, v1)}×Pr{(v2, v3)}×· · ·

(16.35)

Since we believe that (v1, v2) is present with confidence 90%, we would say

Pr{(v1, v2)} = 1 − 0.9 = 0.1. Similarly, since we have 50% confidence that (v2, v3)

is present, Pr{(v2, v3)} = 1 − 0.5 = 0.5. For all other edges (vi , v j ), Pr{(vi , v j )} =
1 − 0.1 = 0.9. There are a total of 12 possible edges for models of 4 genes, so

Pr{M ′
1} = 0.1 × 0.5 × (0.9)10 ≈ 0.0174. (16.36)

Adding in this prior knowledge, we can revise our estimate of the plausibility of

model M ′
1 to:

Pr{d1, d2, d3, d4|M ′
1}Pr{M ′

1} ≈ 3.00 × 10−9 × 0.0174 ≈ 5.23 × 10−11. (16.37)

We can similarly incorporate this prior knowledge into our consideration of the

alternative models. For M ′
2, we proposed that G1 regulates G2, which we believe with

confidence 90%; G2 regulates G3, which we believe with confidence 50%; and that

there are no other edges, which we believe each with confidence 90%. Thus, the prior

probability for M ′
2 is

Pr{M ′
2} = 0.9 × 0.5 × (0.9)10 ≈ 0.141 (16.38)

and therefore

Pr{d1, d2, d3, d4|M ′
2}Pr{M ′

2} ≈ 0.141 × 1.00 × 10−7 ≈ 1.41 × 10−8. (16.39)

For M ′
3, we proposed that G1 does not regulate G2, an event we believe has probability

10%; that G1 does regulate G3, which we also believe has probability 10%; that G2

regulates G3, which we believe has probability 50%; and that no other genes regulate

one another, which we believe with probability 90% for each such possible edge.

Thus, we derive the prior probability

Pr{M ′
3} = 0.1 × 0.1 × 0.5 × 0.99 ≈ 1.94 × 10−3. (16.40)

Therefore, our complete objective value for that model is

Pr{d1, d2, d3, d4|M ′
3}Pr{M ′

3} ≈ 2.81 × 10−7 × 1.94 × 10−3 ≈ 5.44 × 10−10.

(16.41)

By comparing the three models, we can see that adding prior knowledge can substan-

tially change our assessments about the relative merits of the models. We previously

concluded that M ′
3 was the best of the three models we considered. M ′

3 shows poor
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agreement with our prior expectations, though, while M ′
2 shows very good agreement.

With this prior knowledge, M ′
2 now stands out as the best of the models. This kind

of use of prior knowledge is one of the most important factors in effectively handling

complex model-inference problems in practice. There is an enormous amount of infor-

mation available in the biological literature and making good use of that information is

one of the key features likely to distinguish an accurate from an inaccurate inference.

Even when we lack real knowledge about a problem, some generic prior probabilities

can be very helpful in achieving good results. One important special case of this is the

use of prior probabilities to penalize model complexity. One might note that before

we started considering prior knowledge, the more complicated models we considered

generally outperformed the simpler ones. That phenomenon will occur even when the

added complexity has no real biological basis because a maximum likelihood model

will exploit every chance correlation occurring in the data to achieve a slightly better

fit. In model inference, this phenomenon is known as overfitting and needs to be

controlled. Prior probabilities provide a way to control for overfitting, by allowing us

to specifically penalize more complicated models. Our decision above to assign a 10%

prior probability to regulatory edges for which there was no prior evidence is a crude

example of an anti-complexity prior. That assumption will tend to favor models having

fewer regulatory relationships unless those additional relationships lead to significant

improvements in the likelihood of the data being generated from the model. Some

more mathematically principled ways to set an anti-complexity prior have also been

developed. One such method is the Bayesian information criterion (BIC) [6], in which

we set the prior probability of each inferred edge to be the inverse of the number of

observed data points. Thus, we would penalize each edge by a factor of 1/8 in our

example.

5 Regulatory network inference in practice

We have now covered the major concepts one needs in order to pose and solve a basic

version of the regulatory network inference problem, but there are still quite a few

details that separate the methods above from the methods likely to be encountered

in the current scientific literature. In this section, we will briefly consider a few

extensions of the problem that will bring it much closer to those in use for challenging

problem instances in practice. We will first consider how we can drop the assumption

of discretization we made at the beginning of the chapter, making full use of real-

valued expression data. We will then examine how the model can be extended to allow

for additional sources of data beyond gene expression levels, as is commonly done

in practice. While we cannot cover these extensions in detail, we can see how these
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Figure 16.6 Example of a Gaussian curve commonly used as a model of real-valued
expression data.

seemingly large changes to the problem actually follow straightforwardly from the

principles we have already covered.

5.1 Real-valued data
One of the most dramatic simplifications we made in our toy model was the decision

to discretize the data, taking data that are generally real-valued and converting them to

binary active/inactive data. It is a minor change to use a more complex discretization –

for example, having three labels to represent normal, overexpressed, and underex-

pressed genes – and we should be able to work out how to extend the concepts we have

already covered to any discretized data set. It is possible, however, to work directly

with continuous data by adding an assumption about the probability distributions from

which data are generated.

It is common to assume that data are normally distributed, i.e. described by a

Gaussian bell curve as in Figure 16.6. This curve is one example of a probability

density function, which describes how likely it is for a given random variable to take

on any given possible value. The density curve is highest around the value μ, indicating

that the random variable will often be near μ, and is low for values far from μ, indicating

that the random variable will rarely be much higher or lower than μ. For a Gaussian

random variable, the peak value μ is the average value of the random variable, also

known as its mean. The width of the bell is controlled by a parameter called its standard

deviation (denoted σ ). The Gaussian probability density is described by the function

Pr{G = g} = 1√
2πσ

e−(g−μ)2/(2σ 2) (16.42)

where G is the random variable (e.g. expression of gene G1) and g is a particular

instance of that random variable (e.g. expression of gene G1 in condition C2).
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We can convert our discretized approach above into an approach for real-valued

data by using that Gaussian function in place of our previous discrete probability

parameters. That is, if we know that the actual real expression value measured by the

microarray for some gene i has mean μi and standard deviation σi , then we can say a

given observed value di j of that gene has likelihood

Pr{di j |M} = 1√
2πσi

e−(di j −μi )2/(2σ 2
i ). (16.43)

The likelihood of a full expression vector di over m different conditions would then

be given by

Pr{di |M} =
m∏

j=1

1√
2πσi

e−(di j −μi )2/(2σ 2
i ). (16.44)

To evaluate this likelihood for a specific data set, though, we need to know μi and σi .

For a gene with no regulators, we will commonly pre-normalize the expression vector

di by the formula

d̂ i j = (di j − μi )/σi , (16.45)

which will produce a vector of d̂ i j values with mean 0 and standard deviation 1. We

can then use this normalized vector in place of the raw di j values. For regulated genes,

we will generally assume that μ is a function of the expression levels of its regulators.

The most common assumption is that the mean μi j of a regulated gene i in condition

j is a linear function of the expression levels of its regulators in that condition. That

is, if we have a gene i regulated by genes 1, . . . , k, then we would assume that

μi j = ai1d1 j + ai2d2 j + . . . + aikdk j (16.46)

where each ai j value is a constant that is part of our model.

Finding the maximum likelihood set of ai j values is known as a regression problem,

and specifically a linear regression problem for a linear model like that above. In the

interest of space, we will not attempt to explain regression here, only note that finding

the maximum likelihood ai j values is a problem we can solve with some basic linear

algebra.

5.2 Combining data sources
Another big difference between our toy model above and a real-world method is that

an effective method in practice is likely to make use of far more data than just gene

expression levels.

Some data sets will inherently have additional information we might use to improve

the model. For example, if the data come from experiments at different points in time,
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we may be able to make a more effective model by assuming expression is a function

of time. If the data come from samples subjected to drug treatments, then we may get

a more accurate inference by assuming expression is a function of the concentration of

drug applied to a given sample. More complicated models are often needed, specialized

to the specific kind of data available, but the basics of evaluating and learning those

models are not substantially different from what we covered above.

Making accurate predictions will often involve reference to an entirely different data

set than the expression data we considered above. For example, we may have DNA

sequence data available for the promoters of our genes, which we can examine for

likely transcription factor binding sites. We may have direct experimental measure-

ments of which transcription factors bind to which genes. We could treat such data

as prior knowledge, building it into our model priors in an ad-hoc fashion. A more

general approach, however, is to extend the likelihood model to account for multiple

experimental measures.

To illustrate this approach, suppose that in addition to the expression data D, we

also have a matrix of binding data B, in which an element bi j is 1 if the product of gene

i is reported to bind to the promoter of gene j . We can augment our prior likelihood

formula for the expression data D to create one evaluating the model as a source for

both D and B. If we assume the expression and binding data are independent outputs

of a common model, then we can say

Pr{D, B|M}Pr{M} = Pr{D|M}Pr{B|M}Pr{M}.
We can evaluate Pr{D|M} and the model prior Pr{M} just as before.

The same concepts we used to derive a probabilistic model of D can then be used to

derive a probabilistic model of B. To account for the possibility of errors in B, we can

propose that data in B is a probabilistic function of the regulatory relationships in M .

We can use four probability parameters to capture the possible relationships between B

and M : pb,0,0, the probability B reports no binding given that there is no binding; pb,0,1,

the probability B reports no binding given that there is binding; pb,1,0, the probability

B reports binding given that there is no binding; and pb,1,1, the probability B reports

binding given that there is binding. These four parameters would then augment the

probability parameters P for our model M = (V, E, P). Given some such model M

we can then say:

Pr{B|M} = (pb,0,0)n0,0 (pb,0,1)n0,1 (pb,1,0)n1,0 (pb,1,1)n1,1 (16.47)

where n0,0 is the number of pairs of genes i and j for which bi j = 0 and (vi , v j ) /∈ E ,

n0,1 is the number of pairs of genes i and j for which bi j = 0 and (vi , v j ) ∈ E , n1,0 is

the number of pairs of genes i and j for which bi j = 1 and (vi , v j ) /∈ E , and n1,1 is

the number of pairs of genes i and j for which bi j = 1 and (vi , v j ) ∈ E .
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The same general ideas can be extended to much more complicated data sets. We can

similarly add in any other independent data sources we want by adding an additional

multiplicative term to the likelihood for each such data source. Matters get somewhat

more complicated if we assume that some data sources are related to one another; for

example, if we want to combine two different measures of gene expression. In such

cases, we cannot assume distinct measures are independent of one another and therefore

cannot simplify our likelihood functions as easily. Nonetheless, similar concepts and

methods to those covered above will still apply even if the likelihood formulae are

somewhat more complicated.

DISCUSSION AND FURTHER DIRECTIONS
We conclude this chapter with a brief summary and a discussion of where
interested readers can go to learn more about the topics covered here. We have
seen in this chapter how one can reason about the problem of regulatory network
inference. Starting with a simple variant of the problem, we have seen how one
can take the real biological problem and abstract it into a precise mathematical
framework. In particular, we explored how maximum likelihood inference can be
used to frame the regulatory network inference problem. We have further seen
some basic methods one can use to find optimal models for that framework. We
have, finally, seen how we can take this initial simplified view of the problem and
extend it to yield sophisticated models that are not far from those used in
practice for difficult real-world network inference problems.

In the process of learning a bit about how regulatory network inference is
solved, we have also encountered some of the major paradigms by which
computational biologists today think about hard inference problems in general.
For example, we saw how to reason about model design, and in particular how
one can think about the issue of abstraction in modeling and the kinds of
trade-offs different abstractions involve. We saw how probabilistic models, and
likelihood models in particular, can provide a general framework for inferring
complex models from large, noisy data sets. In the process, we saw an example of
how one conceptualizes a problem through the lens of machine learning, for
example through reasoning about prior probabilities. These basic concepts in
posing and solving for models of large data sources are central to much current
work in high-throughput and systems biology. It does not take much imagination
to see how the same basic ideas can apply to many other inference problems in
biology.

In the space of one chapter, we can only receive a brief exposure to the many
techniques upon which the regulatory network inference problem draws; we will
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therefore conclude with a short discussion of where the interested reader can
learn more about the issues discussed here. The specific problem of analyzing
gene expression microarrays has been intensively studied and several good texts
are available. The beginning reader might refer to Causton et al. [7] while those
looking for a more advanced treatment might refer to Zhang [8]. More generally,
though, the methods described here are fundamental to the fields of statistical
inference and machine learning; anyone looking to do advanced work in
computational biology would be well advised to seek a strong grounding in those
areas. There are numerous texts to which one can refer for statistics training.
Wasserman [9, 10] provides a very readable introduction for the beginner.
Mitchell [11] provides an excellent introduction to the fundamentals of machine
learning and Hastie et al. [12] to more advanced topics in statistical machine
learning. The specific kind of model we covered here is known as a Bayesian
model (or Bayesian network model or Bayesian graphical model). There are many
treatments one can reference on that class of statistical model specifically, such
as Congdon [13], Gelman et al. [14], and Neapolitan [15]. We largely glossed over
here the details of algorithms for solving for difficult Bayesian models. The above
texts will provide more in-depth coverage of the general algorithmic techniques
outlined above. For a deeper coverage of Markov chain Monte Carlo methods,
one may refer to Gilks et al. [16]. We did not provide any coverage here of more
advanced methods in optimization, an important area of expertise for those
working on state-of-the-art methods. Optimization is a big field and no one text
will do the whole area justice, but those looking for training on advanced
optimization might consider Ruszczyński [17] and Boyd and Vandenberghe [18].
Curious readers may also refer to the primary scientific literature for seminal
papers that introduced some of the major concepts sketched out there [19, 20].

QUESTIONS

(1) Construct a graph describing the regulatory relationships among four genes, one of which
is the sole regulator of the other three.

(2) Provide a likelihood function for regulation of the genes described in Question 1.
(3) How might we change a likelihood function to model a more error-prone expression data

source versus a less error-prone expression data source?
(4) How would we need to modify the likelihood function for expression of a single

unregulated gene if we assume three different expression levels (high, medium, and low)
instead of two (on and off)?
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Adjacency: Defined by two synteny blocks that are adjacent to each other in two species.
Alignment: A correspondence between symbols in two sequences. Symbols without

corresponding symbols are said to correspond to a gap. Each pair of corresponding
symbols is given a weight dependent on whether it is a match (positive weight) or a
mismatch (negative weight or a penalty), and each gap is assigned a penalty dependent
on its length. The alignment score is the total of all weights. The optimal alignment
has the highest score.

Alignment Score: See “Alignment.”
Allele: One of the alternative forms of a gene at a specific location. It can also refer to the

specific nucleotide (A,C,G,T) if that position varies among individuals in a population.
Anagram: A word or phrase formed by rearranging the characters of another word or

phrase. For example, “eleven plus two” can be rearranged into the new phrase “twelve
plus one.”

Ancestral Genome Reconstruction: The attempt to restore the genomic events
(substitutions, insertions, deletions, genome rearrangements, and duplications) that
happened during evolution.

Bipartition: A division of the vertices of a tree into two subtrees.
Bitstring: A string consisting of 0s and 1s which is used to represent binary numbers or

the presence/absence of a feature of interest.
Bootstrap Support: A measure of the reliability of internal nodes in a tree.
Breakpoint: Defined by two synteny blocks that are adjacent in one species and separate

in another.
Child Node: See “Tree.”
Cis Regulatory Module: A genomic cluster of binding sites for multiple transcription

factors. The presence of such clusters may indicate interactive binding of multiple
transcription factors that synergystically regulate gene transcription.

Coevolution: The genetic change of one species in response to the change in another.
Complete Subtree: A subtree consisting of a node and all its descendents (children,

children of children, etc.).
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Conditional Probability: The probability of a state of interest (s) computed only on the
subset of cases where a specified condition (c) is true. Denoted by Pr(s|c).

Consensus Binding Site: Given a set of k-nucleotide long binding sites for a transcription
factor, the consensus binding site is a sequence of k nucleotides comprised of the most
frequent nucleotide at each position among the known binding sites.

Contingency Table: In statistics, a contingency table is used to display the frequency of
two or more variables in a matrix format.

Cospeciation: In the study of cophylogeny, a cospeciation event corresponds to
contemporaneous speciation events in the host and parasite trees.

Cumulative Skew: The sum of skew values across thinly sliced adjacent sequence
windows.

Cumulative Skew Diagram: A plot of cumulative skew along the length of a genome.
Degree: The degree of a node is the number of edges touching the node.
Degree Distribution: A distribution of the degrees of all nodes in a given network.
Depth: See “Tree.”
Duplication: In the study of cophylogeny, a duplication event corresponds to a speciation

event in the parasite tree that is not contemporaneous with a speciation event in the host
tree. In genomics, a duplication of a genomic region creates an additional copy of that
region.

Dynamic Programming: An efficient algorithmic technique for solving a wide range of
problems without direct enumeration of all possible solutions.

Edge: See “Network.”
Eulerian Cycle: A cycle in a graph which traverses each edge exactly once.
Eulerian Cycle Problem (ECP): The computational problem of finding an Eulerian

cycle in an arbitrary graph or proving that such a cycle does not exist in the graph.
Evolutionary Tree: See “Phylogeny.”
Fisher’s Exact Test: A statistical test used to analyze the significance of a contingency

table.
Fragment Assembly: The computational stage of genome sequencing, which consists of

using generated reads to assemble the genome.
Gap: See “Alignment.”
GC-content: The proportion of all nucleotides in a DNA molecule that are either guanine

or cytosine.
GC-skew: A measure of guanine excess (equivalently, cytosine depletion) on one strand

of a DNA sequence as compared to its complementary strand.
Gene Expression: The amount of RNA corresponding to a given gene; commonly used

as a measure of the gene’s level of activity.
Gene Recognition: Identification of the protein-coding regions in a DNA sequence.
Genome Rearrangement: A mutation that affects a large portion of a given genome. A

genome rearrangement occurs when one or two chromosomes break and the fragments
are reassembled in a different order. In general, these rearrangements are comprised of
inversions, translocations, fusions, and fissions.

Genome Sequencing: The process of determining an organism’s complete genome.
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Genotype: The combination of alleles that describe the genetic makeup of an individual.
Glycan: In biochemistry, the carbohydrates (sugars) linked to other molecules (such as

proteins or lipids) are called glycans. Glycans are components of glycoconjugates, such
as glycoproteins and glycolipids. There exist many different glycans on the cell surface,
some of which share similar structures.

Glycan Array: A glycan array comprises a library of synthetic (thus structurally known)
glycans that are automatically printed on a glass slide, which is a platform to
simultaneously assay the interaction between a glycan-binding protein and hundreds of
its potential glycan ligands. A glycan array experiment can detect the subset of glycans
that interact with the glycan-binding protein being assayed.

Graph: See “Network.”
Graphlet: A small induced subgraph of a large network, in which an induced subgraph

refers to a subgraph which contains every edge from the original graph that connects
two vertices of the subgraph.

Hamiltonian Cycle: A cycle in a graph which visits every vertex exactly once.
Hamiltonian Cycle Problem (HCP): The computational problem of finding a

Hamiltonian cycle in an arbitrary graph or proving that such a cycle does not exist in
the graph. The HCP is NP-Complete.

Haplotype Block: A high LD-region in a genome.
Hash Table: A data structure that uses a hashing function to store information based on

(key, value) pairs.
Hemagglutin (HA): A kind of membrane protein attached on the surface of the influenza

virion. Hemagglutinin can recognize the glycans and glycoproteins on the surface of
the host cells and therefore induce the infection of influenza virus.

Horizontal Gene Transfer: The transfer of genes between organisms of different species
or strains.

Host Switch (also known as horizontal transfer): In the study of cophylogeny, a host
switch event corresponds to a parasite species switching from one host lineage to
another.

Infinite Sites Assumption: The hypothesis that a given genome is large enough relative
to mutation rates such that any site mutates at most once in the genealogical history of
the population.

Influenza Virus: Influenza virus is the cause of influenza. It belongs to the family
Orthomyxoviridae of RNA viruses and has three subtypes (A, B, and C, respectively).
The influenza virion is a globular particle protected by a lipid bilayer, which infects
epithelial cells of the host respiratory systems.

Inversion: See “Reversal.”
l-mer: A sequence of l nucleotides, which is represented by the orderings of the letters A,

G, C, and T.
l-mer Multiplicity: The number of times that an l-mer occurs in a given genome or in a

set of reads.
Leaf Node: See “Tree.”
Likelihood: The conditional probability of a set of observations given a specified model.
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Likelihood Function: A mathematical function describing the probability of any possible
set of observations of a system, commonly representing the visible experimental
outputs of a system in terms of a set of parameters describing a model of the system.

Linear Programming: A general formulation of problems involving maximizing or
minimizing a linear objective function subject to certain linear constraints.

Link: See “Network.”
Linkage Disequlibrium (LD): See “Linkage Equilibrium.”
Linkage Equilibrium: The random assortment of alleles at different loci due to historical

recombination events. If the loci are spatially close with a small number of
recombination events between them, the alleles may be correlated, resulting in linkage
disequilibrium.

Locus: A location on the genome. It can refer to a specific genomic coordinate, or a
genetic marker such as a gene in the region.

Loss: In the study of cophylogeny, a loss event occurs when a parasite species moves from
a host lineage to its child without speciating. (Technically, this may be due to a failure
to speciate or one of several other processes, such as extinction or sampling failure.)

Maximum Parsimony Problem: A computational problem for computing phylogenies
from a set of sequences, where the objective is a tree with the sequences at the leaves,
with additional sequences at the internal nodes in the tree, so that a minimum number
of substitutions occurs in the tree.

Mutation: A change in the order or composition of the nucleotides in a DNA sequence.
Mutualism: A relationship between two species that benefits both species.
Network (also known as graph): a set of objects, called nodes, along with pairwise

relationships that link the nodes, called links or edges.
Network Motif: A subgraph recurring in a network at frequencies much higher than

those found in randomized networks.
Network Property: An easily computable approximate measure of network topology that

is commonly used for comparing large networks.
Node: See “Network.”
NP-complete: A classification of problems in computer science that are all equivalent to

each other. No efficient algorithm to any NP-complete problem has ever been found,
although neither have NP-complete problems been proven to be intractable.

NP-hard: The NP-hard problems are the hardest problems within the set NP of
computational problems. The set NP consists of all decision problems (Yes/No
questions, such as “can we split this group of people into two sets so that no two people
in the same set know each other?”) for which we can verify a “Yes” answer in
polynomial time. To say that a computational problem is NP-hard means that if we
could solve this problem in polynomial time, then all problems that are known to be
NP-hard could also be solved exactly in polynomial time. To date, no one knows
whether it is possible to solve any NP-hard problem in polynomial time.

Observable Variable: A variable that can be measured without uncertainty.
Optimal Alignment: See “Alignment.”
Parent Node: See “Tree.”
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Phenotype: The observable biochemical and physical traits of an individual. For
example, height, weight, and eye color are all phenotypes, as are more complex
quantities such as blood pressure.

Phylogenetic Footprint: A non-protein-coding region in a genome that has been
conserved throughout the course of evolution. Evolutionary conservation is indicative
of a regulatory role for the region.

Phylogenetic Tree: See “Phylogeny.”
Phylogeny (also called an evolutionary tree, or a phylogenetic tree): This is typically a

rooted, binary tree, so that each internal node has exactly two children.
Point Mutation: A DNA mutation in which only a single nucleotide is changed.
Polytene Chromosome: A giant chromosome that originates from multiple rounds of

replication (without cell division) in which the individual replicated DNA molecules
remain fused together.

Positional Weight Matrix (PWM): A construction commonly used to represent the
DNA binding specificity of a transcription factor. For a k-nucleotide long binding site,
the PWM has four rows for each of the four nucleotides and k columns for the k
binding site positions. Each column of the PWM includes the frequencies with which
each of the four bases are observed at the specific binding site position among the
known binding sites of the transcription factor.

Posterior: The resulting probability of a model or hidden parameter value based on
computing Bayes’ Law for the available observations; specifically, the conditional
probability of the model given the observations.

Prior: The unconditional probability of a model or hidden parameter value prior to taking
any observations into consideration.

Prior Probability: A probability assigned to possible values of a variable in a system
independent of the specific data available for a given analysis problem; often used in
statistical modeling to encode a bias towards model features we expect to find based on
prior knowledge of a system.

Protein–Protein Interaction (PPI) Network: A network in which proteins are modeled
as nodes and edges exist between pairs of nodes corresponding to proteins that can
physically bind to each other.

Read: See “Read Generation.”
Read Generation: The experimental stage of genome sequencing, which amounts to

identifying small pieces of the genome, called reads.
Recombination Hotspot: A low-LD region of a genome.
Replication/Transcription Bubble: The separation of two complementary strands of a

double-stranded DNA molecule to allow for synthesis of nascent DNA/RNA.
Replication Origin/Terminus: The position in a genome where replication starts/ends.
Reversal: An important type of genome rearrangement. A reversal (also called an

inversion) occurs when a segment of a chromosome is excised and then reinserted with
the opposite orientation and with the forward and reverse strands exchanged.

Root Node: See “Tree.”
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Single Nucleotide Polymorphism (SNP): A single nucleotide variation in a genome that
recurs in a significant proportion of the population of the associated species.
Pronounced “snip.”

Subgraph: A subgraph of a graph G is a graph whose nodes and edges belong to G.
Subtree: A subtree of a tree is a tree consisting of a subset of connected nodes in the

original tree.
Synteny Block: A set of clustered genomic markers with an evolutionarily conserved

order.
Systematic Evolution of Ligands by Exponential Enrichment (SELEX): An in-vitro

technique to determine the DNA binding specificity of a protein.
Tag SNP: A member of a set of SNPs which when taken together are sufficient to

distinguish the patterns within a haplotype block.
Transcription Bubble: See “Replication/Transcription Bubble.”
Transcription Factor (TF): A protein that interacts with the gene transcription

machinery of a cell to regulate the expression levels of genes.
Transcriptional Regulatory Network: A mathematical model of the influence of genes

in a common cell upon one another’s expression levels. Consists of nodes representing
individual genes or gene isoforms and edges representing the influence exerted by a
source gene on the expression level of a target gene.

Tree: A tree is a directed (rooted) graph with no cycles, in which each node has zero or
more children nodes and at most one parent node. The nodes having no child are
called the leaf nodes. The only node in a tree with zero parent is called the root node.
The depth of a node is defined as the length (i.e. the number of edges) of the path from
that node to the root. Both the nodes and edges in a tree can be labeled. For example,
the nodes in a glycan tree are labeled by the monosaccharide residues, and the edges in
a glycan tree are labeled by the linkage type.

Treelet: Given a labeled tree, an l-treelet is a subtree with l nodes. Notably, a treelet is a
subgraph of a tree if and only if both their topology and node/edge labels match.

Tree of Life: A tree that depicts the evolutionary relationships between all cellular life
forms.

Tree Topology: The branching order in a phylogeny.
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2-break operation see DCJ
2-colorability problem 271–272
3-colorability problem 276

abstraction 320
acceptor sites 68, 81
acyclic graphs 70
adenovirus 119, 119, 124
adjacencies 181, 184
adjacency 177

list 294–295
matrix 294–295

adjacency-based ancestral reconstruction 213–218
algorithms

anchors 309
choosing 333–334
hashing 259–261
polynomial-time 180
rounding 25
stopping rule 285

algorithms, specific
DCJSORT 184
Get-Predecessor-Successor (R) 217
GRAAL (GRAph ALigner) 309–311
GreedyReversalSort 175–176
GRIMM-Synteny algorithm 209
PathBLAST 309

alignment problem 66–67, 77
alignments 77–80

edit distance 173
local 79
matches and mismatches 67
multiple 80
phylogenetic trees 194
whole-genome 209

alleles 4, 14
bi-allelic marker 24

complex 18–19, 18
disease 101
major and minor 24

Alu sequence 40
Amenta, N. et al. 261
amino acids 67

amino terminus 127
match weights matrix 80
residues 291
selection pressure 118
signals in 129
substitution matrices 91

analysis of variance (ANOVA) 13
ancestral karyotype reconstruction 211–212
ancestral reconstruction 214–216

adjacency-based 213–218
base-level 206–207
rearrangement-based 212–217

anchors (algorithms) 309
animal influenza viruses 148–164, 155
antiviral drugs 150
approximation algorithms 176
arbitrary dependencies 138–139
archaea 119, 190–191, 195
arcs (graphs) 44–48, 69–70
association(s)

association test 16–17
chromosome populations 14
common disease 20
epistasis, effect of 19
vs. linkage 15–16
Linkage Disequilibrium 10

Avian Flu 148, 150

Bacillus subtilis 118, 121, 124
backtracking (graphs) 72
bacteria replication 116
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bacterial genomes 113, 116–118
bait protein 293, 298
baker’s yeast 303, 309, 311
base (nucleotide) 94, 94
base-level reconstruction 206–207
base-pair 96
Bayes’ Law 100, 100–102, 101, 102, 105
Bayesian estimation of species trees (BEST) 254
Bayesian inference 102–103

arbitrary dependencies 138–139
MrBayes 253, 254
prior probability 103, 103, 103, 104
uninformative priors 103

Bayesian information criterion (BIC) 337
Bayesian model 342
Bayesian posterior probabilities (BPP) 253
Bergeron, Ann 187, 180
BEST (Bayesian estimation of species trees) 254
bi-allelic marker 24
bias 293, 299
BIC (Bayesian information criterion) 337
big cats (Panthera) 248–263
binding affinity 140, 151
binding partners 126
binding sites (see also TF binding sites)

clusters 142
dependencies 143
identification 143, 141
positions 138
prediction 140–141, 140
search for 140–143

binding specificity 130
Bininda-Edmonds, O. R. P. 254
binomial probability distribution 102
bins (classes) 14
biochemical interaction networks 305
BioGRID database 303
Bioinformatics Algorithms 167
biological function, discovering 303–306
biomolecules 126–127, 127, 151
bipartite graph 184
bipartitions 254–258, 255–256, 258–263
bitstrings 256–263
Blanchette M. et al. 207
BLAST algorithm 309
blood pressure 13–14
Bombyx mori (silkworm) 169
Bonferroni correction 16
Boot Split Distance method (BSD) 195
bootstrapping 195, 253
Borellia burgdorferi 116–118
Boreoeutherian common ancestor 203, 207, 217
Boyd, S. 342
BPP (Bayesian posterior probability) 253
branch-and-bound algorithms 284
breakpoints 168, 177–178, 209, 212, 219

Brenner, Sydney 64
brewer’s yeast (Saccharomyces cerevisiae) 126, 318
Bruijn, Nicolaas de 52, 55, 63
BSD (Boot Split Distance) 195

cancer 168, 220–221, 220
CARs (continuous ancestral regions) 217
cases and controls 4–5, 16
cats (felids) 229, 248–263, 250, 253
causal loci 8, 15
causal mutation 4–6, 8
cDNAs 319
CDRV (Common Disease Rare Variant) 20
ceiling function 177
cell division tree 192
cells 3–4
cellular interactions 126–129
centralities (networks) 296
Chargaff parity rules 124, 124
Charleston, Michael 234, 245
chimeric protein sets 191
chimpanzees 95, 205, 207
ChIP (Chromatin Immunoprecipitation) 130, 130,

143, 157
Chi-square (χ2) statistic 135–136, 138
Chi-square (χ2) test 11
chloroplasts 191
chromatid 157, 207
chromatin structure 143
chromosome painting 212
chromosomes 6–9, 94–95, 168–170, 207–208

circular 118, 168, 181
disease 100–101, 219–221
human genome 211
intervals 94
linear 180–181
mammalian common ancestor 211
paternity inference 103
super-chromosome 180

cis-regulatory module (CRM) 142
Citoscape software 295
classes (bins) 14
Classical MultiDimensional Scaling (CMDS)

196–199
Clay Mathematics Institute 48
cluster analysis 196
clustering 296, 297, 297, 304
CMDS see Classical MultiDimensional Scaling
coalescent trees 7, 8
coding potential 68
codons 67, 118
coevolution 227, 228–229, 230–235, 233–235, 244
collision (bitstrings) 261
common ancestor 6–7, 203, 207, 211, 217, 250
Common Disease Rare Variant (CDRV) 20
comparative genomics 202–206, 205–207
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comparisons, network 295–300
Complete Genomics 58
computation time 234 (see also run times of

algorithms)
computational complexity

large, noisy data sets 316
objective function 322
penalizing 337

computational problems 268–277, 320 (see also
glycan motif finding problem; heuristic
solutions; NP-hard problems)

2-colorability 271–272
3-colorability 276
cophylogeny 229–233
Fixed-tree Maximum Parsimony 278
genome rearrangements 171–175
global alignment 77
machine learning 333
Median Problem 213
motif finding 148
network alignment 306–312
NP-completeness 76
optimization 267
regression 339
tractable vs. intractable 48–49

“computational thinking” 250
conditional probability 97, 99–100, 138
confounding factors 16, 17–18
Congdon, P. 342
connected graphs 44, 70
consensus

base 137
methods 157–158
model 132
nucleotides 131, 135–136
sequence 131–132, 140–141

consensus representation 131–132
consensus tree algorithm 256
consensus trees 248, 250–251, 254–263 (see also

evolutionary histories)
consensus trees, majority 251–252, 254, 256,

258–259, 261–263, 262–263
conserved regions 40
conserved segment 209
constructive proof 61
contingency table 160
continuous ancestral regions (CARs) 217
continuous data (real-valued data) 338–339
controls and cases 4–5, 16
Cooties 228, 229–232
cophylogeny 245
cophylogeny data 241
cophylogeny reconstruction problem 227, 229–233,

232, 234, 239
Jane software 235, 239
jungles technique 234

cospeciation events 230–232, 242–243
cost (numerical)

cophylogeny reconstruction 233–235, 239, 239–241
phylogeny estimation 278–283
traveling salesman problem 235–237
trees 278–283, 284–285

CRM see cis-regulatory module
cross-species genomic changes 121–122, 124,

190–193, 207–210 (see also horizontal gene
transfer)

cumulative GC skew 114–115
cumulative skew diagrams 112–124
cut based network 304
cycles (graphs) see acyclic graphs; Eulerian cycle;

Hamiltonian Cycle Problem; supercycle
cyclic genomes 49
cytoplasm 4
cytosine nucleotide (C) 23, 118, 119

D-statistic 10
Dantzig, George 32
Darwin, Charles 189, 228, 245, 249
data

de-noising 303
noisy 293, 316
normalized 319
real-valued (continuous) data 338–339

data collection 293, 303
data sources, combining 339–341
databases

BioGRID 303
DIP (Database of Interacting Proteins) 292
GenBank 113, 130, 253
HPRD 303
JASPAR 130
largest molecular 253
sequence data 268
TRANSFAC 130

Davis, B.W. et al. 251, 253, 254
DCJ (double-cut-and-join) model 180, 180, 184, 218
DCJSORT algorithm 184
de Bruijn graphs 52–54, 61 (see also directed graphs)
de Bruijn, Nicolaas 52, 55, 63
deamination 118–119, 119
degree distributions 296, 300–302
degree of a node 296, 303, 304
degree of a vertex 43–45
deoxyribonucleic acid (DNA) see DNA entries
dependencies, arbitrary 138–139
depth-first traversal 257
dHP distance 180, 183
diameter of a network 297
dinucleotides 119, 134
DIP (Database of Interacting Proteins) 292
directed graphs 45–47, 59–60 (see also de Bruijn

graph)
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diseases
alleles 101
cancer 168, 220–221, 220
carriers 100
chromosomal aberrations 219–221
complex 16
development 167
estimating risk 100–102
genes 100
parasites 245
proteins 304
recessive 100
SNPs 94
tests 98–99, 303

distance matrix 193, 196
distance metrics 171

BSD method 195
dDCJ distance 183
dHP distance 180, 183
edit distance 171–173, 173
genome rearrangement 171–175
minimum-evolution method 252
reversal distance 212–213

distribution degree 300–302
distribution law 84
diversification 250
DNA (deoxyribonucleic acid) 167–168

cDNAs 319
double-stranded DNAs 119, 119, 124,

167–168
fragments 56–57
horizontal transfer 121–122, 124
motif 157
replication 111, 191
signals 129
single-stranded 118
structure 124

DNA and RNA, regulatory interactions 316–319
DNA sequencing 23, 36–40, 63

Complete Genomics 58
the early days 49–50, 56
largest molecular database 253
modeling regulatory motifs 130
motif finding problem 157
next generation technologies 58
and the overlap puzzle 36–40
phylogeny estimation 277–285
sequencing machines 40, 55
WebLogo 133

Dobzhansky, Theodosius 6, 173–175, 207, 221
dogs 213–214
Dollo parsimony model 253
donor sites 68, 81
dot-plot 170–171, 180
double-stranded DNAs (dsDNAs) 119, 119, 124,

167–168

Double-Cut-and-Join see DCJ
drift, genetic 8, 95
Drmanac, Radoje 55–56, 58, 64
Drosophila pseudoobscura (fruit fly) 142, 173, 174,

207
drugs 150, 304, 305, 305–306
dsDNAs see double-stranded DNAs
Duffy locus 17–18
duplication events 242–243
dynamic programming 66–92, 91, 239, 282

“earthquakes” (genomic) 208
ECPs see Eulerian Cycle Problems
edge lists (adjacency lists) 294–295
edges (trees) 229, 239
edges (vertices) 271–272, 291
edit distance 171–173
efficiency of a method (see computational complexity;

time complexity)
endosymbiotic events 191–192
epidemics 148
epistasis 18–19
epithelial cells 150, 155
equivalence of conditions 45, 59
Erdos–Renyi random graph model 300
Escherichia coli 116, 118, 118, 190–191
ethnicity 17–18
eukaryotes 68, 128, 142, 191–192, 207
Euler, Leonhard 40, 55, 63
Eulerian assembly 58
Eulerian cycle 45–48, 53–54, 60–61
Eulerian Cycle Problem (ECP) 43–44, 49, 50–52
Eulerian graphs 54
Eulerian path 45
Euler’s Theorem for directed graphs 44–48, 58–61

(see also Königsberg Bridge Problem)
Theorem I 45–47, 58, 59–60
Theorem II 47, 59–61

evolution 111, 268
and alignment 77
mammalian 203–204
and mutagenesis 119
rates of 303
simulation of 237

evolutionary conservation 142
evolutionary histories 250–251, 267 (see also

consensus trees)
evolutionary trees 173, 248, 250–254, 268,

277–286 (see also phylogenetic trees;
phylogenies)

exhaustive searches 273, 274–276, 282–284
exons 68, 68, 81–83, 81, 81–82

false-negative error rate 16
false-positive error rate 16
family traits 15, 101, 168
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fast solutions 233, 234, 236, 259–261, 303 (see also
heuristic solutions)

feasible region 31
felids (cats) 229, 248–263, 250, 253
figs (Ficus) 228, 228, 228–229, 241–243
finches (Estrildidae) 228–229, 241, 244
Fisher’s exact test 152, 160
fissions 180, 218
Fitch’s method 214–216, 216–217
fitness 111–112, 142, 236, 239–241
Fixed-tree Maximum Parsimony problem 278
flow-based network 304
fluorescence 57, 96, 103, 319
forensic DNA tests 94, 96
Forest of Life (FOL) analysis 193–199
FRAG NEW 252
fragment assembly 37–40, 49–50

directed graphs 45
Eulerian Cycle Problem 50–52
Hamiltonian Cycle Problem 49–51
read multiplicities 54

Frank, A. C. 118
Frontiers at the Interface of Computing and Biology

(NRC Committee) 250
fruit fly (Drosophila pseudoobscura) 142, 173, 174,

207
F-test 14
fungi 311
fusions 180, 181, 208, 218, 220

galactose (Gal) 126–127, 155
gap penalties 80
gaps in a network pathway 309
gaps in sequences 66–67, 206–207
Gaussian bell curve 338–339
GBPs see glycan binding proteins
GC-skew (guanine–cytosine) 112, 113–114, 114–115,

118, 119, 119
GDV (graphlet degree vector) 304–305, 309–310
GenBank 113, 130, 253
gene expression 58, 139, 318–319, 342
gene mapping 209
gene order data 212
gene pairs, corresponding 179
gene permutations 175–178
gene recognition 67, 68, 68, 81–83, 91
generalized random graphs model 300
genes 4
genetic algorithms 234–237, 242, 244
genetic code see genotype
genetic fingerprint 95
genome assembly 49
genome rearrangement problem 171–175, 173, 186

(see also rearrangements)
Applications of Genome Rearrangements 187
genome reconstruction 205–207

genome sequencing 37, 56, 190–193, 202–204, 209
(see also DNA sequencing)

genome sequencing projects 202, 220, 268
genome sorting problem 175–176
genomes 118, 119, 167–168, 173, 191
genomics (see also Tree of Life (TOL))

changes 112, 112–113
comparative 202–206
“earthquakes” 208
genomic anchors 179
RNAi functional 305

genotype (genetic code) 3, 4–5, 5, 14, 94
genotyping cost, tag SNPs 24
Genscan software 135
geometric graphs 301–302, 302, 303
Get-Predecessor-Successor (R) algorithm 217
Gibbs sampling algorithm 334
Gilbert, Walter 38, 63, 113
global alignment problem 77
global network alignments 307–308
global optimum solution 285
global polarity switch 113–115
global properties (networks) 295–296
global-alignment (sequences) 77, 91
glycan arrays 148, 151, 156–157, 160, 161, 163
glycan binding proteins (GBPs) 155, 156, 158
glycan motifs 148, 157–161
glycan structures 152–153, 160
glycans 153, 156–157
glycans and hemagglutinin interaction 148, 150–151,

151, 156–157, 156–157
glycans ligands 156–157
glycobiology 151, 163
glycoconjugates 153
glycoproteins 150, 153
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